Схемы Программы Библиотека Все для сотового Компьютеры Поиск
Чат Форум Ссылки Рефераты Гостевая

 

В зад

(В главное меню)

Вперед

71.JPG

Рис. 3.17. Простой искатель скрытой проводки

устройства основав на свойстве полевого транзистора изменять свое сопротивление под действием наводок на выводе затвора. Транзистор VT1 — типа КП103, КПЗОЗ с любым буквенным индексом (у последнего вывод корпуса соединяют с выводом затвора). Телефон BF1 — высокоомный, сопротивлением 1600...2200 Ом Полярность подключения батареи питания GB1 роли не играет.

При поиске скрытой проводки корпусом транзистора водят по стене и по максимальной громкости звука частотой 50 Гц (если это электропроводка) или радиопередачй^радиотрансляционная сеть) определяют место прокладки проводов.

Индикатором может служить не только головной телефон, но и омметр (изображен штриховыми линиями) или авометр, включенный в этот режим работы. Источник питания GB1 и телефон BF1 в этом случае не нужны.

Искатели скрытой проводки на транзисторах

Определить место прохождения скрытой электрической проводки в стенах помещения поможет сравнительно простой прибор, выполненный на трех транзисторах (рис. 3.18). На двух биполярных транзисторах (VT1, VT3) собран мультивибратор, а на полевом (VT2) — электронный ключ."

Принцип действия искателя основан на том, что вокруг электрического провода образуется электрическое поле — его и улавливает искатель.

Если нажата кнопка выключателя SB1, но электрического поля в зоне антенного щупа WA1 нет либо искатель находится далеко от сетевых проводов, транзистор VT2 открыт, мультивибратор не работает, светодиод HL1 погашен

72.JPG

Рис. 3.18. Искатель проводки на трех транзисторах

Достаточно приблизить антенный щуп, соединенный с цепью затвора полевого транзистора, к проводнику с током либо просто к сетевому проводу, транзистор VT2 закроется, шунтирование базовой цепи транзистора VT3 прекратиться и мультивибратор начнет работать. Начнет вспыхивать светодиод. Перемещая антенный щуп вблизи стены, нетрудно проследить за пролеганием в ней сетевых проводов.

Полевой транзистор может быть любой другой из указанной на схеме серии, а биполярные — любые из серии КТ312, КТ315. Все резисторы — МЛТ-0,125, оксидные конденсаторы — К50-16 или другие малогабаритные, светодиод — любой из серии АЛ307, источник питания — батарея «Корунд» либо аккумуляторная батарея напряжением 6. .9 В, кнопочный выключатель SB1 — КМ-1 либо аналогичный.

Часть деталей прибора смонтирована на плате из одностороннего фольгиро-ванного стеклотекстолита. Корпусом искателя может стать пластмассовый пенал для хранения школьных счетных палочек. В его верхнем отсеке крепят плату, в нижнем — располагают батарею. К боковой стенке верхнего отсека прикрепляют выключатель и светодиод, а к верхней стенке — антенный щуп. Он представляет собой конический пластмассовый колпачок, внутри которого находится металлический стержень с резьбой. Стержень крепят к корпусу гайками, изнутри корпуса надевают на стержень металлический лепесток, который соединяют гибким монтажным проводником с резистором R1 на плате.

Антенный щуп может быть иной конструкции, например в виде петли из отрезка толстого (5 мм) высоковольтного провода, используемого в телевизоре. Длина отрезка 80... 100 мм, его концы пропускают через отверстия в верхнем отсеке корпуса и припаивают к соответствующей точке платы.

Желаемую частоту колебаний мультивибратора, а значит, частоту вспышек светодиода можно установить подбором резисторов R3, R5 либо конденсаторов Cl, C2. Для этого нужно временно отключить от резисторов R3 и R4 вывод истока полевого транзистора и замкнуть контакты выключателя.

Искатель может быть собран и по несколько иной схеме (рис. 3.19) с использованием биполярных транзисторов разной структуры — на них выполнен генератор.

73.JPG

Рис. 3.19. Искатель на биполярных транзисторах разной структуры

Полевой; же транзистор (VT2) но прежнему управляет работой генератора при попадании антенного щупа WA1 в электрическое поле сетевого провода.

Транзистор VTli может быть серии КТ209 (с индексами А—Е) или КТ361, VT2 - любой из'серии КП103, VT3 - любой из серии КТ315, КТ503, КТ3102. Резистор iRl может быть сопротивлением 150...560 Ом, R2 — 50 к0м...1,2 МОм, R3 и R4 — с отклонением от указанных на схеме номиналов на 15%, конденсатор С1 — емкостью 5...20 мкФ.

Индикаторы скрытой проводки на микросхемах

Схема прибора приведена на рис. 3.20. Он состоит из двух узлов — усилителя напряжения переменного тока, основой которого служит микромощный операционный усилитель DA1, и генератора колебаний звуковой частоты, собранного на инвертирующем триггере Шмитта DD1.1 микросхемы К561ТЛ1, частотозадающей цепи R7C2 и пьезоизлучателе BF1.

При расположении антенны WA1 вблизи от токонесущего провода электросети наводка ЭДС промышленной частоты 50 Гц усиливается микросхемой DA1, в результате чего зажигается светодиод HL1. Это же выходное напряжение операционного усилителя, пульсирующее с частотой 50 Гц, запускает генератор звуковой частоты.

Ток, потребляемый микросхемами прибора при питании их от источника напряжением 9 В, не превышает 2 мА, а при включении светодиода HL1 — б...7 мА. Источником питания может быть батарея 7 Д—0,125, «Корунд» или аналогичная зарубежного производства.

Иногда, особенно когда искомая электропроводка расположена высоко, наблюдать за свечением индикатора HL1 затруднительно и вполне достаточно звуковой сигнализации. В таком случае светодиод может быть отключен, что повысит экономичность прибора. Все постоянные резисторы — МЛТ-0,125, подстроенный резистор R2 — типа СПЗ-38Б, конденсатор С1 — К50-6. Антенной WA1 служит площадка фольги на плате размером примерно 55х12 мм.

74.JPG

Рис. 3.20. Обнаружитель электропроводки на микросхемах

Монтажную плату размещают в корпусе из диэлектрического материала так, чтобы антенна оказалась в головной части и была максимально удалена от руки оператора. На лицевой стороне корпуса располагают выключатель питания SA1, светодиод HL1 и звукоизлучатель BF1 Начальную чувствительность прибора устанавливают подстроечным резистором R2 Безошибочно смонтированный прибор в налаживании не нуждается.

Простой индикатор переменного электрического поля

Простой индикатор переменного электрического поля скрытой проводки может быть собран с использованием в качестве регулируемого внешним электрическим полем делителя напряжения — резистора R1 и канала полевого транзистора (рис. 3.21). В качестве управляемого генератора импульсов использован генератор на микросхеме К122ТЛ1. Нагрузкой генератора для индикации являются высокоомные головные телефоны типа ТОН-1 (ТОН-2)

75.JPG

Рис. 3.21 Простой индикатор электрического поля

При наличии внешнего переменного электрического поля сигнал, наводимый на антенну, поступает на управляющий электрод полевого транзистора (затвор), что вызывает модуляцию сопротивления канала полевого транзистора. В итоге, падение напряжения на делителе изменяется, что, в свою очередь, вызывает появление генерации с изменяющейся частотой.

Индикатор магнитного поля

Вокруг проводников, по которым протекает переменный ток, создается переменное не только электрическое, но и магнитное поле. Поэтому для обнаружения скрытой проводки можно регистрировать переменное магнитное поле.

Предлагаемый вашему вниманию индикатор магнитного поля (рис 3.22) содержит датчик магнитного поля В1, усилитель переменного тока, собранный на ОУ DA1, и компаратор напряжения на ОУ DA2. Переменное магнитное поле возбуждает в катушке датчика переменное напряжение, которое после усиления поступает на один из входов компаратора, а к его второму входу подведено постоянное регулируемое напряжение с движка переменного резистора R3

Если датчик расположен вне магнитного поля, амплитуда напряжения на выходе ОУ DA2 мала (шумы и помехи), на выходе компаратора будет постоянное напряжение 1.. 1,5 В. Поэтому светодиод HL1 либо не светится, либо светится слабо — это зависит от свойств конкретного экземпляра ОУ DA2 и свето-диода HL1 Когда датчик приближают к проводнику с током, на выходе усилителя DA1 появляется переменное напряжение, достаточное для переключения компаратора

76.JPG

Рис. 3.22. Индикатор магнитного поля

На выходе компаратора появляются импульсы напряжения, и светодиод HL1 включится, сигнализируя о том, что по испытуемому проводнику протекает ток. Для повышения чувствительности датчика и помехозащищенности прибора параллельно обмотке датчика В1 включен конденсатор С2. Вместе с обмоткой этот конденсатор образует контур, настроенный на частоту, равную частоте сети. Порог срабатывания компаратора, а значит, и чувствительность индикатора можно регулировать переменным резистором R3.

Почти все детали прибора размещены на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1 мм. Плату помещают в отдельный металлический экранирующий футляр. Размер платы выбран так, чтобы ее можно было смонтировать в прямоугольных обоймах от отработавших батарей «Крона» или «Корунд». К футляру индикатора прикрепляют щуп, на конце которого монтируют датчик магнитного поля.

В качестве датчика В1 можно использовать готовую универсальную головку от кассетного магнитофона или плеера. Несложно изготовить датчик и самостоятельно. Основой головки служит кольцевой маднитопровод диаметром 7 мм из феррита 1500НМ. Кольцо аккуратно разламывают пополам и снова склеивают эпоксидным клеем, вложив предварительно в один из зазоров немагнитную прокладку (например, из бумаги или текстолита) толщиной примерно 0,5 мм. Этот зазор — рабочий, он будет служить чувствительной зоной головки. Затем на кольцо наматывают 400 витков провода ПЭВ-2 0,1 мм. Кромки кольца следует притупить. Провод наматывают так, чтобы вся обмотка располагалась на половине кольца, противоположной рабочему зазору. Тем же клеем пропитывают обмотку, фиксируют датчик на щупе и обволакивают его тонким слоем клея для защиты от механических повреждений. Конденсатор С2 размещают в щупе рядом с датчиком. Соединяют датчик с платой экранированным проводом.

В приборе, кроме указанных на схеме, можно применить ОУ К140УД6Б, К140УД7А. К140УД7Б; светодиод - АЛ102А-АЛ102Д, АЛ307А-АЛ307Н, АЛ316А, АЛ316Б, АЛ341А-АЛ341Е, АЛ360А, АЛ360Б. Резистор R2 - СПО или СП4-1, остальные— ВС, МЛТ; конденсаторы С1, С5 — К50-6, К53-1, К52-1, остальные — КМ, КЛС. Налаживание сводится к настройке контура R1C2 на частоту генератора. Конденсатор может быть составлен из нескольких, включенных параллельно. Вообще говоря, контур можно и не настраивать, и даже совсем отказаться от конденсатора С2, но при этом чувствительность индикатора будет меньше в два-три раза. Питать прибор необходимо''от стабилизированного источника напряжения с выходным током 60... 70 МА,¦^ЙО не исключено и автономное питание от батарей «Корунд» или аккумуляторных — 7Д-0,125.

Универсальный прибор-индикатор

Этот универсальный прибор-индикатор является для вас просто находкой, поскольку сочетает в себе при всей своей простоте два индикатора. Прибор позволяет не только определить срытую проводку, но и обнаружить любой металлический предмет, находящийся в стене или полу (арматура, старые провода и т.п.), и, таким образом, значительно облегчит поиск места для оборудования тайника.

Прибор состоит из двух независимых устройств: металлоискателя и индикатора скрытой электропроводки (рис. 3.23). На транзисторе VT1 собран ВЧ генератор, который вводится в режим возбуждения регулировкой напряжения на базе VT1 с помощью потенциометра R6. ВЧ напряжение выпрямляется диодом VD1 и переводит компаратор, собранный на ОУ DA1, в положение, при котором гаснет светодиод HL1 и генератор периодических звуковых сигналов, собранный на микросхеме DA1 находится в выключенном состоянии. Вращением регулятора чувствительности R6 устанавливается режим работы VT1 на пороге генерации, который контролируется выключением светодиода HL1 и генератора периодического сигнала. При попадании в поле индуктивности L1/L2 металлического предмета генерация срывается, компараяюр переключается и положение, при котором загорается светодиод HL1, и на пьезокерамический излучатель подается периодическое напряжение частотой около 1000 Гц с периодом около 0,2 с.

77.JPG

Рис. 3.23. Универсальный прибор-индикатор

Резистор R2 предназначен для установки режима порога генерации при среднем положении потенциометра R6

Индикатор скрытой проводки собран на базе микромощного операционного усилителя DA2. При расположении вблизи электропроводки провода, подключенного на вход усилителя, наводка промышленной частоты 50 Гц воспринимается антенной WA2, усиливается чувствительным усилителем, собранным на DA2, и переключает с этой частотой светодиод HL2.

Конструктивно прибор выполнен в корпусе, спаянном из фольгированного стеклотекстолита и окрашенном нитроэмалью. Приемные антенны WA1 и WA2 должны быть максимально удалены от руки и находиться в головной части прибора. Следует обратить внимание на то, что часть корпуса, в которой находятся антенны, не должна иметь внутреннего покрытия фольгой. SB1 переключает режимы работы, включатель питания SB2 совмещен R6 В качестве источника питания используется батарея типа «Корунд» Токи потребления при различных режимах работы:

Дежурный режим металлоискателя .. ................. . .... ..... . .... ......... 2 мА

Включение светодиода и подача звукового сигнала . .10 мА Дежурный режим искателя скрытой проводки . . ...... .. . 0,2 мА

Включение светодиода ............................ ........ ... .... ... 2 мА

3.3.2. Индикаторы фазового провода электропроводки

При подключении запорных устройств тайников к сети переменного тока или оборудования электрического освещения внутри тайников часто возникает необходимость в определении фазового провода. Это, в первую очередь, обусловлено тем, что некоторые из рассматриваемых в данной книге запорных устройств правильно работают только при соответствующем подключении к ним фазового и нулевого проводов сети переменного тока. Для определения фазового провода используются специальные приборы, называемые индикаторами фазы Эти устройства позволят вам быстро и безошибочно произвести монтаж электропроводки и другого оборудования, необходимого при изготовлении тайника.

Индикатор на неоновой лампе

Индикаторы, используемые для индикации фазы и наличия высокого напряжения, известны уже довольно давно Обычно в состав индикатора входят последовательно включенные щуп-жало отвертки, ограничитель тока (резистор R1 сопротивлением 0.47...1 МОм с малой емкостью между подводящими электродами, например типа ВС-0,5; МЛТ-1,0; МЛТ-2,0),

78.JPG

Рис. 3.24 Индикатор на неоновой лампе

неоновая лампа HL1 и сенсорная площадка (рис. 3.24). При одпополярном подключении отвертки к то-копесущему фазовому проводнику и касании пальцем сенсорной площадки неоновая лампа засветится, сигнализируя о наличии высокого напряжения. Напряжение, которое можно контролировать подобным индикатором, составляет 90... 380 В, реже — от 70 до 1000 В, при частоте тока 50 Гц.

Индикаторы на лавинных транзисторах

Долгое время считалось, что заменить неоновую лампу на другой элемент индикации невозможно. Действительно, емкостной ток, протекающий от источника переменного тока частотой 50 Гц и напряжением 100...400 В через цепь индикации и тело человека на «землю» при эквивалентной емкости тела человека около 300 пФ, составляет 10...740 мкА, что на два порядка ниже величины тока, необходимого для свечения светодиодов. Тем не менее, используя специальные схемные решения, для индикации фазы можно использовать светодиоды, пьезокерамические излучатели и другие индикаторы. Оценим величину мощности, потребляемую неоновой лампой при ее непрерывном свечении. При напряжении на лампе 100 В и разрядном токе 10...40 мкА подводимая мощность составляет 1...4 мВт. Значение подводимой мощности оказывается достаточным, чтобы обеспечить свечение светодиодных индикаторов, однако, поскольку напрямую обеспечить необходимую величину тока невозможно, требуется использование своеобразных трансформаторов, позволяющих получить не непрерывное свечение индикатора, а импульсное, с сохранением значения подводимой мощности. Таким требованиям отвечают релаксационные генераторы импульсов, работающие по принципу накопления и кратковременного сброса энергии — периодический заряд конденсатора от слаботочного источника тока до напряжения пробоя порогового элемента и последующий разряд на низкоомную нагрузку (светодиод). Разрядный ток при этом достаточен для того, чтобы вызвать яркую вспышку светодиода. Таким образом, подобное устройство должно содержать накопительный конденсатор, имеющий малый ток утечки и рабочее напряжение, превышающее напряжение пробоя порогового элемента; пороговый элемент, отвечающий следующим требованиям: малые токи утечки при напряжении ниже пробивного и малое сопротивление при пробое. Таким требованиям отвечают лавинные транзисторы и их аналоги. На рис. 3.25 приведены схемы индикаторов фазы, выполненные на основе релаксационных генераторов на лавинных транзисторах типа К101КТ1 структуры п-р-п (либо К162КТ1 структуры р-п-р). Транзисторы должны быть включены инверсно.

Индикатор (рис. 3.25) содержит ограничитель тока, выпрямитель, выполненный по мостовой схеме, и собственно релаксационный генератор импульсов. Частота вспышек светодиода при напряжении сети 220 В близка к 3 Гц. При увеличении емкости бумажного или электролитического конденсатора (с малой утечкой) яркость вспышек повышается со снижением частоты вспышек. Минимальное напряжение, которое позволяет обнаружить подобный индикатор, составляет 45 В. Частота вспышек снижается при этом до 0,3 Гц. Для сравнения:

индикаторы на неоновых лампах позволяют индицировать напряжений не ниже

79.JPG

Рис. 3.25. Индикаторы на лавинных транзисторах

65...90 В. Индикаторы используют альтернативные схемы выпрямителей с сохранением прочих свойств. В схемах продемонстрирована возможность подключения сенсорных площадок к другим элементам схемы.

710.JPG

Рис. 3.26. Индикатор на составном лавинном тиристоре

Устройство может быть выполнено и на основе составного лавинного тиристора (рис. 3.26). В схеме (рис. 3.27) генератор импульсов собран на аналоге лавинного транзистора с напряжением переключения (пробоя) 12 В. Для транзисторов микросборки К101КТ1 при инверсном включении это напряжение близко к 8 В.

711.JPG

Рис. 3.27. Индикатор на аналоге лавинного транзистора

Индикатор (рис. 3.28) собран по мостовой RC-схеме с включением в диагональ моста порогового элемента — лавинного транзистора.

712.JPG

Рис. 3.28. Индикатор на основе мостовой RC-схемм

Схема индикатора (рис. 3.29) также выполнена с RC-мостом, однако в ней использованы два транзистора п-р-п и р-п-р структуры: при зарядке конденсаторов С2 и СЗ до определенного значения происходит мгновенное переключение транзисторов из состояния «выключено» в состояние «включено». При этом конденсатор С1 разряжается через светодиод VD5 и процесс повторяется.

713.JPG

Рис. 3.29. Индикатор на двух транзисторах.

Индикаторы фазы на КМОП-микросхемах

Для построения индикаторов фазы без использования внешних источников питания могут быть использованы и другие виды генераторов. Например, на рис. 3.30 показана схема индикатора фазы с использованием генераторов импульсов на КМОП-микросхемах. Генератор вырабатывает пилообразные импульсы, в связи с чем яркость свечения светодиода плавно нарастает и понижается.

714.JPG

Рис. 3.30. Индикатор на микросхеме К176КТ1

715.JPG

Рис 3 31 Индикатор на микросхеме К561ЛЕ5

Работает генератор следующим образом. Конденсатор С2 заряжается через резистор R2 до напряжения включения коммутаторов тока (элементы DA1.1 и DA1 2) При срабатывании коммутаторов ключевой элемент DA1 1 разряжает через светодиод накопительный конденсатор С1, а,DA1 2 разряжает конденсатор С2, после чего процесс повторяется

Устройство, приведенное на рис. 331, выполнено на основе двух генераторов импульсов, первый из которых определяет длительность и частоту следования световых вспышек и звуковых посылок, второй — частоту звука Поскольку в процессе зарядки конденсатора С2 устройство потребляет ток на несколько порядков меньший, чем в режиме индикации, оно фактически работаем по описанному ранее принципу «включено/выключено». В схемах для защиты микросхем от возможных перегрузок по напряжению использованы стабилитроны

В устройствах могут быть использованы светодиоды АЛ307, АЛ336 и другие индикаторы, которые желательно отобрать по максимальному свечению при минимальном токе Поскольку падение напряжения на элементах схем (исключая резистор R1) определяется напряжением пробоя порогового элемента (более 8 В), в схемах могут быть использованы низковольтные радиоэлементы (кремниевые диоды и транзисторы с малыми обратными токами п-р переходов), конденсаторы с малыми токами утечки.

Индикаторы позволяют проверять наличие напряжения на токонесущих элементах, превышающее 45. 50 В (при частоте 50 Гц), в том числе индицировать различные наводки, позволяют оценивать качество заземления и возможность его использования; проверять наличие напряжения на трубах отопления и т д Устройства можно использовать и в цепях с повышенной частотой, например для индикации напряжения частотой 400 Гц, хотя следует учитывать, что емкостной ток через тело человека возрастает при этом пропорционально частоте тока. При необходимости чувствительность индикаторов легко «загрубить» включением высокоомных делителей напряжения, неинверсным включением лавинных транзисторов, подключением стабилитронов и их цепочек и другими методами.

3.3.3. Индикаторы сетевого напряжения

Один из самых привлекательных индикаторов сетевого напряжения — све-тоизлучающий диод Во-первых, он малогабаритен Во-вторых, потребляет небольшую мощность при достаточно ярком свечении.

Однако при использовании светодиода в качестве индикатора сетевого напряжения следует помнить, что работать он будет не с постоянным^ а с переменным током при амплитудном значении напряжения около 310 В. Поэтому, в первую очередь, нужно ограничить ток через светодиод до максимально допустимого и, кроме того, защитить его от обратного напряжения. Есть различные варианты подключения светодиода к сетевой проводке конструкции. Один из них показан на рис. 3.32. Резисторы R1 и R2 — ограничители тока через светодиод HL1, который в данном случае выбран равным 10 мА. Вместо двух резисторов мощностью по 1 Вт можно установить один на 2 Вт, но сопротивлением 30 кОм.

716.JPG

Рис. 3.32 Индикатор с токоограничительными резисторами

Диод VD1 ограничивает обратное напряжение, приложенное к светодиоду, на уровне около 1 В. Он может быть едва ли не любым кремниевым, лишь бы был способен пропускать выпрямленный ток более 10 мА. Но предпочтение следует отдать миниатюрным диодам серий КД102—КД104 либо другим малогабаритным, скажем, серий КД105, КД106, КД520, КД522. Другой вариант включения светодиода показан на рис. 3.33. Здесь токоограничивающим элементом является конденсатор С1. Желательно использовать малогабаритный пленочный металлизированный конденсатор типа К73-17 либо бумажный, рассчитанный на работу при переменном токе и с номинальным напряжением не менее 400 В. При зарядке самого конденсатора ток через него ограничивает резистор R1.

717.JPG

Рис. 3.33 Индикатор с гасящим конденсатором

Приведенные схемы пригодны для использования практически любых свето-диодов, работающих в диапазоне видимого света. Предпочтение все же отдается ярким светодиодам с рассеянным излучением (в порядке возрастания силы света): АЛ307КМ (красный), АЛ307ЖМ (желтый), АЛ307НМ (зеленый). Если допустимый ток через светодиод превышает 20 мА, оба резистора в первом варианте включения следует подобрать сопротивлением по 10 кОм, а емкость конденсатора во втором варианте увеличить до 0,15 мкФ. Диод в обоих вариантах должен быть рассчитан на выпрямленный ток не менее 20 мА.

3.4. Электронные приспособления для подземных и подпольных тайников

Поскольку большие тайники оборудуются, как правило, в подвальных помещениях и погребах, то существует вероятность затопления тайника грунтовыми водами и, как следствие, приведение в негодность всего, что в нем хранится. Кроме воды, большую опасность для вашего тайника могут составить, например, грызуны — мыши и крысы. Последние могут разгрызать даже металл. Существуют различные способы для борьбы с этими явлениями. Ниже мы расскажем вам как использовать для этого электронику.

3.4.1. Простейший индикатор уровня воды

Вашему вниманию предлагается простейший индикатор уровня воды, изготовить который может даже начинающий радиолюбитель. Он содержит минимальный набор широкодоступных деталей (рис. 3.34)

Как работает индикатор? Пока вода не достигла электродов, сопротивление между ними бесконечное. Генератор, составленный из указанных на схеме деталей, не работает и индикатор практически не потребляет тока

Но вот вода коснулась электродов, «замкнула» их. Теперь на базу транзистора будет подаваться отрицательное (по отношению к эмиттеру) напряжение, и генератор начнет работать. Из динамической головки громкоговорителя раздастся громкий звук, тональность которого зависит от сопротивления между электродами и емкости конденсатора. Деталей в индикаторе немного и их можно разместить внутри корпуса громкоговорителя. Транзистор, резистор и конденсатор монтируют на небольшой (30х40 мм) планке из изоляционного материала. Батарею крепят к съемной задней крышке или к нижней стенке корпуса, а выключатель устанавливают на лицевой панели. Через отверстие в задней стенке выводят двухпроводный шнур (можно использовать бывший шнур громкоговорителя) и подпаивают его к электродам — они представляют собой два облуженных медных проводника диаметром 1...1,5 мм, закрепленных на пластмассовой пластине. Электроды помещают в тайнике на нужной высоте и фиксируют их в этом положении.

718.JPG

Рис. 3.34 Простейший индикатор уровня воды

Чтобы максимально ускорить! изготовление сигнализатора, за основу взят абонентский громкоговоритель с напряжением 15 В, внутри которого установлены трансформатор, динамическая головка и переменный резистор. Для нашего случая движок резистора должен находиться в положении максимальной громкости (в верхнем по схеме).

Остается приобрести транзистор VT1 (любой из серий МП39—МП42), резистор R1 сопротивлением 1...15 кОм (МЛТ-0,25 или МЛТ-0,125), конденсатор С1 любого типа емкостью 0,05 ..0,25 мкФ, выключатель SA1 (тумблер) и батарею GB1 напряжением 4,5 В да изготовить два электрода — Е1 и Е2, которые нужно установить на определенной высоте

Сигнализатор работоспособен лишь при определенном подключении обмоток трансформатора. Это устанавливают при проверке конструкции Включив питание, подсоедините к электродам резистор сопротивлением примерно 10 кОм Если звука нет, поменяйте местами выводы от первичной или вторичной обмотки При одном из подключений звук обязательно появится (если, конечно, движок переменного резистора будет находиться в положении максимальной громкости)

Затем отсоедините от электродов резистор и опустите их в воду на глубину 5...7 мм. Отсутствие звука в этом случае может свидетельствовать лишь о ма лом коэффициенте передачи тока транзистора Выход из положения — заме нить транзистор.

3.4.2. Сигнализатор влажности

Сигнализатор, схема которого приведена на рис. 3 35, позволяет управлять различными исполнительными устройствами, питающимися от силовой сети 220 В

Сигнализатор известит вас о появлении воды в тайнике и даже может включить откачивающий насос, чтобы понизить ее уровень ниже концов датчиков Конечно, в случае второго всемирного потопа такая система не поможет, но в обыкновенные дождливые дни и весной, и осенью она прекрасно справится со своей задачей

719.JPG

Рис. 3.35. Сигнализатор влажности

Принцип работы схемы необычайно прост. База транзистора VT1 подключена через токоограничивающий резистор R1 к первому электроду датчика. Второй электрод, расположенный па той же высоте, подсоединен к положительной шине питания. Когда вода достигнет электродов датчика, возникающий электрический ток открывает транзистор VT1. Светодиод HL1 (любой), включенный в цепь его коллектора, загорается. Ток коллектора транзистора также протекает через светодиод оптрона микросхемы DA1, включая водяной насос. Использование конденсатора С1, включенного между базой и коллектором транзистора, в цепи отрицательной обратной связи позволяет избежать ложных срабатываний от посторонних переменных наводок. Симистор VS1 подберите, исходя из мощности исполнительного устройства. Электроды датчика изготовьте из нержавеющего и неокисляющегося в воде металла, что поможет вам избежать увеличения сопротивления при их контакте с водой. Лучше всего сделать электроды из нержавеющей стали, но в общем случае возможно использование менее водостойких электродов, если, конечно, их очищать время от времени. Они укрепляются параллельно друг другу па расстоянии 2,5 см. Для поддержания их в таком положении возьмите кусочек какого-нибудь изоляционного материала.

Деталей в схеме мало и они вполне уместятся на небольшой плате. Питать сигнализатор можно как от батареи, так и от выпрямителя напряжением +12 В.

3.4.3. Бесконтактные датчики уровня воды

Рассмотрим две схемы бесконтактных датчиков, использующих пьезоизлуча-тели. Первая срабатывает при полном погружении пьезоэлемента в воду, а вторая — при соприкосновении воды с поверхностью пьезодатчика.

Известно, что автогенератор с пьезоэлектрическим излучателем (например, ЗП-4), включенным в цепь положительной ОС, работает до тех пор, пока обе плоскости излучателя находятся в воздухе. Если же хотя бы к одной из них слегка прикоснуться пальцем, система окажется демпфированной. Колебания автогенератора при этом срываются. То же самое произойдет, если плоскость излучателя будет касаться поверхности жидкости. Таким образом, когда уровень жидкости высок и она смачивает пьезопластипу, генератор не работает. Но как только уровень опустится настолько, что пьезоизлучатель окажется в воздухе, генератор запускается, подавая сигнал на выход датчика. После увеличения количества воды до прежнего уровня генератор снова останавливается.

Схема устройства изображена на рис. 3.36. Автогенератор собран па транзисторе VT1 и пьезоизлучателе BQ1 по довольно распространенной схеме. Он вырабатывает колебания частотой около 2500 Гц, которые через переходную цепь C1R3R4 поступают на вход триггера Шмитта, собранного на логических элементах DD1.1, DD1.2. Триггер преобразует колебания в последовательность прямоугольных импульсов той же частоты, стабильных по амплитуде.

Цепь, состоящая из диода VD2, резисторов R7 и R8 и конденсатора С4, преобразует прямоугольные импульсы в постоянное напряжение, выделяемое на конденсаторе С4. Второй триггер Шмитта, выполненный на элементах DD1.3, DD1.4,

720.JPG

Рис. 3.36. Датчик с транзисторным генератором

служит для дискретизации напряжения на конденсаторе С4, которое меняется довольно плавно. На выходе этого триггера сигнал скачком изменяется с высокого уровня, когда генератор работает, до низкого при его остановке.

Питать устройство можно от источника стабилизированного напряжения 3...15 В, если микросхема DD1 - К561ЛА7 или 564ЛА7, и 5...9 В, - если К176ЛА7. При напряжении 4 В устройство потребляет ток не более 4 мА, а при 15 В — не более 18 мА.

Диоды VD1 и VD3 предохраняют датчик от повреждения при ошибочной перемене полярности напряжения питания. Конденсаторы С2 и СЗ — сглаживающие. Питать датчик допустимо и от батареи элементов или аккумуляторов.

Таким образом, низкому уровню жидкости тут соответствует высокий уровень выходного напряжения, а высокому — низкий. Если же требуется инверсный сигнал, резисторы R3 и R4 нужно поменять местами, а также изменить на обратную полярность включения диода VD2.

Микросхему К561ЛА7 можно заменить на К561ЛЕ5, 564ЛА7, 564ЛЕ5, К176ЛА7 или К176ЛЕ5 без изменения нумерации выводов, а также четырьмя инверторами микросхемы К561ЛН2 или 564ЛН2 с изменением номеров выводов.

Диоды VD1 —VD3 могут быть любыми из серий КД102, К ДЮЗ или другими кремниевыми с допустимым прямым током не менее 20 мА. Транзистор — любой из серий КТ315, КТ312, КТ342, КТ503.

Допустимо применить здесь и транзистор структуры р-п-р (любой из серий КТ208, КТ209, КТ361, КТ502), но в этом случае его эмиттер подключают не к общему проводу, а к плюсовому выводу конденсатора СЗ. Так же поступают и с нижним по схеме выводом излучателя BQ1. Верхний по схеме вывод резистора R1 соединяют с общим проводом.

Описанный датчик чувствителен при работе с жидкостями, срыв колебаний автогенератора происходит, как правило, лишь в том случае, когда пьезоизлуча-тель полностью погружен в жидкость.

Вследствие того, что вода способна лишь понизить частоту резонанса излучателя примерно на 25%, а не сорвать колебания генератора путем демпфирования колебаний пьезоизлучателя, датчик уровня жидкостей должен быть устроен несколько иначе (рис. 3.37). Здесь автогенератор датчика построен на элементах DD1.1, DDlr2 и пьезоизлучателе BQ1. Элементы DD1.3, DD1.4 образуют триггер Шмиттада конденсатор С1 и резисторы R3 и R4 — переходную цепь.

Информационный вход D триггера DD2.1 соединен с собственным инверсным выходом, поэтому триггер выделяет период повторения импульсов на входе С (на выходе триггера Шмитта). Триггер DD2.2 играет роль элемента сравнения текущего значения упомянутого периода повторения с образцовой длительностью, зарядки конденсатора С4 через резистор R8. Дифференцирующая цепь C5R9 служит для предустановки в единичное состояние триггера DD2.2 после включения питания.

Когда контролируемый уровень жидкости ниже-нормы, частота автогенератора высока, поэтому конденсатор С4 за период не успевает зарядиться настолько, чтобы триггер DD2.2 переключился сигналом на входе С в единичное состояние. На выходе 1 устройства будет низкий уровень напряжения, а на выходе 2 — высокий.

Когда уровень жидкости достигнет нижней плоскости датчика — пьезоизлу-чателя BQ1, частота автогенератора понизится, а конденсатор С4 за период будет успевать заряжаться до такого напряжения, при котором триггер DD2.2 переключится из нулевого состояния в единичное. На выходах устройства произойдет смена уровней.

Четкость срабатывания устройства обеспечена физическими свойствами самой жидкости. Так, обволакивание нижней плоскости пьезоизлучателя поднявшейся жидкостью и соответствующее понижение частоты автогенератора происходят довольно резко, причем независимо от того, хорошо или плохо смачивает она эту грань.

Столь же резко происходит и разрыв контакта между излучателем и поверхностью жидкости при опускании ее уровня. Важно, что остаточная жидкостная пленка на нижней плоскости датчика почти не изменяет его резонансной частоты. Величина жидкостного «гистерезиса» срабатывания по частоте зависит главным образом от вязкости и температуры жидкости и смачиваемости плоскости датчика.

Резистор R8 необходимо подобрать. Сначала измеряют частоту прямоугольных импульсов на выходе элемента DD1.4, когда пьезоизлучатель BQ1

721.JPG

Рис. 3.37. Датчик уровня воды с пьезоэлементом

находится в воздухе; предположим, она будет равна 2500 Гц. Затем снова измеряют частоту импульсов, когда нижняя плоскость пьезоизлучателя BQ1 контактирует с поверхностью контролируемой жидкости; пусть частота понизилась до 2000 Гц. Тогда сопротивление резистора R8 должно быть таким, чтобы переключение триггера DD2.2 из нулевого состояния в единичное и обратно происходило при средней частоте — 2250 Гц. Тем самым будет, в известной мере, устранено влияние на порог срабатывания датчика питающего напряжения, температуры и некоторого изменения свойств жидкости. При подборке резистора R8 вход С триггера DD2.1 на время отключают и подают на него прямоугольные импульсы соответствующей частоты от внешнего генератора. Из-за отсутствия «гистерезиса» момент срабатывания триггера DD2.2 по частоте будет сопровождаться некоторым «дребезгом». Не следует обращать на это внимания — он полностью исчезнет после восстановления нарушенного соединения.

Как уже было сказано, цепь C5R9 устанавливает триггер DD2.2 в единичное состояние сразу же после подачи питания. Тем самым предотвращаются случаи ложного кратковременного включения исполнительного механизма.

3.4.4. Устройства для отпугивания грызунов Простое устройство для отпугивания грызунов

Как уже отмечалось выше, неприятности может доставить вам не только вода, но и живые существа, а именно крысы. Эти вредные животные прекрасно питаются оплеткой и изоляцией проводов, а зубы их настолько остры и крепки, что могут разрушить даже металл. Именно для защиты вашего тайника и его содержимого от этих маленьких «монстров» и предназначены описываемые ниже приборы.

722.JPG

Рис. 3.38. Простой генератор для отпугивания грызунов

Схема генератора, показанная на рис. 3 38, состоит из модулятора низкой частоты (Cl, C2/DD1 1, DD1 2, Rl, R2), генератора ультразвуковых колебаний (СЗ, С4, DD1 3, DD1.4, R3, R4), усилителя мощности на транзисторах VT1 — VT3 и излучателя, в качестве которого использован высокочастотный громкоговоритель 4ГДВ-1

При номиналах, указанных на схеме, генератор излучает частотно-модулированные колебания в диапазоне 15 40 кГц. Частота генератора регулируется резистором R4, частота модуляции регулируется резистором R2 в пределах 2 ..10 Гц

Необходимо иметь в виду, что ультразвуковые колебания, излучаемые этим генератором, могут отрицательно воздействовать на нервную систему человека и домашних животных Длительное пребывание в помещении с работающим генератором может вызвать головную боль, тошноту и другие ощущения дискомфорта, поэтому включать его рекомендуется непосредственно перед уходом из помещения

Если установить контакт SB1 таким образом, что при несанкционированном проникновении в помещение этот контакт замыкается, генератор может работать еще и как сирена охранной сигнализации, поскольку начинает излучать модулированные по частоте колебания в диапазоне 1000 2000 Гц

Следует иметь в виду, что при длительной работе в одном частотном диапазоне крысы могут адаптироваться, поэтому необходимо резисторами R2 и R4 изменять параметры излучения 2—3 раза в неделю Можно также применить такой прием конденсатор С4 соединить с отрезком провода, создающим дополнительную емкость, изменяющуюся при изменении температуры, влажности, силы ветра (если провод вывести наружу) и т д Тогда частота будет изменяться по случайному закону

Многочастотный генератор ультразвука

Постоянно звучащий тон, хотя и надоедлив, но вполне терпим. Иное дело, если тон переменный, например звук двух- или трехтональной сирены либо сирены с периодически изменяющейся часготой Воздействие таких источников звука на животных, не юворя уже о человеке, неизмеримо сильнее Эффективность возрастает, если частота модуляции звуковых колебаний совпадает с частотой некоторых жизненно важных биоритмов Подобные сирены способны вызвать даже у диких животных чувство тревоги, испуга и страха

Ультразвуковые излучатели отпугивающих устройств тоже должны воспроизводить колебания не постоянной, а каким-то образом промодулированной частоты. Поскольку на человека сильнее воздействует звук переменной частоты, видимо, на животных более эффективно будет влиять именно частотная модуляция ультразвука

Предлагаемое устройство (рис 3.39) представляет собой ультразвуковой генератор, частота колебаний которого промодулировапа инфразвуковыми колебаниями частотой 6.. 9 Гц Генератор инфразвуковой частоты образуют элементы DD1.1, DD1.2, резисторы Rl, R2 и конденсатор Cl Цепочка из резисторов R3, R4, R6, конденсатора С2, диодов VD1, VD2 и транзистора VT1 предназначена для

723.JPG

Рис. 3.39. Ультразвуковой многочастотный генератор

периодического «увода» частоты ультразвукового генератора ~ симметричного мультивибратора, собранного на элементах DD1.3, DD1.4, резисторах R5, R7 и конденсаторах С5, Сб. Его частота периодически, с частотой 6...9 Гц, изменяется от 25 до 50 кГц.

Транзисторы VT2—VT5, каждый из которых включен по схеме эмиттер-ного повторителя, образуют двухтактный мостовой усилитель, нагрузкой которого служит динамическая головка ВА1 — она излучает ультразвук с частотной модуляцией. Диод VD3 и конденсаторы СЗ, С4 — это фильтр в цепи питания микросхемы DD1. Диод VD3, кроме того, предохраняет микросхему от выхода из строя в случае ошибочной полярности включения источника питания всего устройства.

Принцип работы ультразвуковой сирены следующий. Если, допустим, эмит-терный переход транзистора VT1 замкнуть проволочной перемычкой, он будет постоянно закрыт, поэтому диоды VD1 и VD2 тоже будут закрыты и ультразвуковой генератор станет работать с постоянной частотой около 25 кГц. Поскольку номиналы резисторов R5, R7 и конденсаторов С5, С6, входящих в мультивибратор, равны между собой, этот генератор формирует строго симметричные прямоугольные импульсы, обеспечивающие головке ВА1 работу без «перекоса». Это — низшая частота работы устройства.

Если теперь верхний (по схеме) вывод резистора R3 переключить на плюсовой проводник источника питания, а перемычку с эмиттер ного перехода транзистора VT1 удалить, то транзистор постоянно будет в открытом состоянии. В этом случае диоды VD1 и VD2 станут поочередно открываться с частотой 50 кГц — удвоенной частотой ультразвукового генератора, являющейся высшей частотой устройства.

В целом же устройство работает следующим образом. Когда сигнал низкого уровня на выходе элемента DD1.2 скачком сменяется высоким, примерно в течение 30 мс частота ультразвукового генератора изменяется (за счет плавного открывания транзистора VT1) с 25 до 50 кГц, после чего в течение 35 мс остается равной 50 кГц. Затем, когда сигнал высокого уровня на том же выходе элемента DD1.2 снова сменяется низким, генератор в течение 30 мс уменьшает свою частоту (из-за плавного закрывания транзистора VT1) с 50 до 25 кГц, после чего в течение 35 мс формирует импульсную последовательность низшей частоты. Далее работа устройства циклически повторяется.

Частоту инфразвукового генератора можно изменять подбором сопротивления резистора R2, время нарастания и спада частоты ультразвукового генератора — резистора R3, а значение высшей частоты устройства — резистора R6. При необходимости изменения низшей частоты (обычно в сторону ее уменьшения вплоть до 20 кГц) одновременно подбирают резисторы R5 и R7, соблюдая при этом равенство их номиналов.

Резисторы устройства могут быть МЛТ-0,125 или МЛТ-0,25. Конденсаторы С1 -СЗ, С5 и С6 - любые керамические, а С4 - любой оксидный; диоды VD1 — VD3 — кремниевые импульсные или высокочастотные. Транзистор КТ315Г можно заменить другим из этой же серии. Составные транзисторы VT2 и VT4 могут быть любыми из серий КТ829, КТ972, a VT3 и VT5 - серий КТ853, КТ973. Если таких транзисторов нет, их можно составить из следующих пар- КТ3102А и КТ817Г (VT2, VT4), КТ3107А и КТ816Г (VT3, VT5). Микросхему К176ЛА7 (DD1) можно заменить на К561ЛА7, 564ЛА7, К176ЛЕ5, К561ЛЕ5, 564ЛЕ5.

Динамическая головка ВА1 — высокочастотная малогабаритная ЗГДВ-1. С головкой 6ГДВ-4 мощность ультразвуковых колебаний возрастет. Можно включить две головки, например ЗГДВ-1 или 2ГД- 36, соединив параллельно (соблюдая полярность) звуковые катушки, но их общее сопротивление не должно быть меньше 4 Ом.

При напряжении источника питания 9 В и восьмиомной нагрузке ток, потребляемый устройством, не превышает 0,5 А, а с четырехомной нагрузкой — 1 А. Питать устройство рекомендуется от источника стабилизированного напряжения соответствующей мощности.

Чтобы затруднить грызунам адаптацию к отпугивающему сигналу, целесообразно, видимо, для модуляции ультразвуковых колебаний использовать более сложный генератор инфразвуковой частоты, например генератор псевдослучайной последовательности импульсов.

724.JPG

Рис. 3.40. Генератор псевдослучайной последовательности импульсов.

Схема практической конструкции такого генератора приведена на рис. 3.40. В нем два дополнительных инфразвуковых генератора — на элементах DD2.1, DD2.2 и DD2.3, DD2.4, которые по отдельности способны формировать прямоугольные импульсы частотой около 1,9 и 3,6 Гц соответственно. Частоты всех трех генераторов выбирают так, чтобы они не были кратны одна другой. Тогда вместо методической частотной модуляции ультразвука удастся получить целые «трелив, напоминающие (разумеется, в звуковом диапазоне) не только птичье пенье, но и мышиный и крысиный писк в стрессовой ситуации.

Устройство с таким генератором колебаний инфразвуковой частоты наиболее точно имитирует тревожный писк грызунов, не воспринимаемый ухом человека, но прекрасно различаемый грызунами.

 

В зад

(В главное меню)

Вперед

-----------------------------------------------------------------------------------------------------------------------------------------

По всем вопросам работы сайта пишите!

 Рейтинг@Mail.ru

Дизайн и программирование - Joker -  2005г.

>