Схемы | Программы | Библиотека | Все для сотового | Компьютеры | Поиск |
Чат | Форум | Ссылки | Рефераты | Гостевая |
Схема таймера приведена на рис. 2.67. Необходимую длительность интервала времени устанавливают переключателем SA1, а время включения нагрузки в текущем интервале осуществляют размыканием контактов секций переключателя SA2.
На элементах DD4.3 и DD4.4, работающих в триггерном режиме, собран формирователь импульсов частотой 100 Гц и длительностью 1...3 мс. С резистора R1, являющегося нагрузкой диодного моста VD4—VD7, выпрямленное напряжение через конденсатор С1 поступает на формирователь тактовых импульсов. В результате на резисторе R3 возникают импульсы частотой 100 Гц, которые запускают триггер Шмитта, образованный элементом DD4.3 с резисторами R4, R5. Резисторы R2 и R3 определяют порог чувствительности триггера. Подбором сопротивления резистора R2 можно в некоторых пределах (1/4 периода) задерживать формируемые импульсы относительно начала каждого полупериода напряжения электросети, что может понадобиться при установке режима работы симистора VS1.
С выхода элемента DD4.3 сформированные импульсы через RC-цепь C3R6 поступают па вход второго триггера Шмитта (DD4.4, R7, R8). Номиналы элементов RC-цени выбраны с таким расчетом, чтобы длительность импульсов па выходе этого триггера была в пределах 1...3 мс. Диод VD1 защищает вход элемента DD4.4 от отрицательного напряжения.
Импульсы, формируемые вторым триггером Шмитта, используются для включения симистора VS1, а также как счетные для делителя частоты DD1. Коэффициент деления этой микросхемы установлен с условием, чтобы на выходах счетчика DD2 получить сетку частот с периодами от 5 мин 37 с до 12 ч. Выбранный переключателем SA1 сигнал необходимой частоты поступает па вход СР счетчика DD3, каждый выход которого через диод соединен со «своими» контактами секций SA2.1 —SA2.8 переключателя SA2. Разомкнутым контактам этих секций переключателя соответствует включенное состояние управляемого устройства в конкретном интервале. При замкнутых контактах транзистор VT1 открыт и импульсы включения, поступающие с выхода элемента DD4.4, не проходят па управляющий электрод симистора VS1 — запорное устройство отключено и тайник закрыт.
Элементы DD4.1 и DD4.2 образуют узел установки счетчиков DD1 —DD3 в исходное состояние при включении питания. При кратковременном отключении напряжения сети таймер сохраняет состояние счетчиков в течение нескольких секунд.
Все детали таймера, кроме переключателей SA1 и SA2, смонтированы на печатной плате из двустороннего фольгированного стеклотекстолита толщиной 1,5 мм. Плата рассчитана на установку резисторов МЛТ-0,25, конденсаторов К50-16 (С2, С5), КМ-5, КМ-6. Остальные диоды и транзисторы могут быть любыми другими из указанных на схеме серий. Микросхема 564ИЕ15 заменима на К561ИЕ15Б. При замене симистора ТС 122-25-11 на другой из серии ТС необходимо пересчитать номиналы резистора R11 и фильтрующего конденсатора С5 в соответствии со значением тока включения используемого типа симистора.
Предохранитель FU1 установлен между двумя держателями из упругой листовой латуни, припаянными к токонесущим площадкам на плате. Переключатель SA1 — обычный галетный, a SA2 — типа ВДМ1-8 (выключатель движковый модульный с восемью парами контактов) или восемь малогабаритных выключателей (тумблеров). Трансформатор Т1 — миниатюрный от блока питания микрокалькулятора, число витков сетевой обмотки которого увеличено до 4200, провода ПЭЛ 0,08 мм (вторичная обмотка содержит 120 витков провода ПЭЛ 0,3 мм) Он фиксирован двумя загнутыми через отверстия в плате лепестками обоймы, стягивающей магнитопровод.
Налаживания правильно собранное устройство не требует, однако желательно, пользуясь осциллографом, проверить режим работы симистора VS1 с выбранной нагрузкой Форма напряжения питания 220 В на управляемом электроприводе должна быть близкой к синусоидальной без каких-либо выбросов. При наличии искажений следует подбором резистора R2 установить оптимальную задержку импульсов включения симистора относительно периода напряжения электросети.
Режим работы запорного устройства тайника устанавливают размыканием соответствующих пар контактов переключателя SA2.
Пользуясь таймером, не следует забывать, что все его детали имеют непосредственный контакт с электросетью. Принимайте соответствующие меры предосторожности при его налаживании и эксплуатации.
2.7.5. Оригинальные кодовые ключи
Существует множество различных конструкций простых электронных кодовых запирающих устройств. Одни из них в качестве ключей используют специальное кодовое устройство, другие — кварцевый резонатор или колебательный контур, разъем с несколькими перемычками и т.п., размещаемые в ключе, который обычно подносят или вставляют в соответствующее гнездо (отверстие) на стене или двери. Другие конструкции используют для включения уже имеющиеся электроприборы, например выключатели освещения. И те и другие с успехом могут быть использованы для открывания тайника.
Электронный ключ с резисторами
В данном устройстве роль ключа играет постоянный резистор определенного сопротивления, вмонтированный в штекер стереотелефонов. А роль замочной скважины возложена на соответствующее гнездо, которое должно быть хорошо замаскировано, например, под отверстие от гвоздя. Если в это гнездо вставить просто перемычку или стереотелефоны, или резистор другого сопротивления, ничего не произойдет, электромагнит фиксации дверной задвижки тайника не сработает и он останется запертым Принципиальная схема замка показана на рис. 2.68.
Кодовое устройство выполнено по схеме измерительного моста сопротивления. Плечи моста состоят из резисторов R1, К2+Кключ и R3, R4. Мост будет сбалансирован только тогда, когда отношение Ri/(R2+R^^) будет равно отношению R3/R4. То есть в данном случае сумма R2 и Кключ должна быть равна R1. Если это соотношение выполняется, мост будет сбалансирован и напряжение в диагонали будет равно нулю. В результате транзисторы VT1 и VT2 окажутся закрытыми, в свою очередь, транзисторы VT3 и VT4 также окажутся закрытыми. Если условие балансировки моста не выполняется, в его диагонали появится напряжение, которое приведет к открыванию одного из транзисторов VT1 или VT2, ток коллектора VT2 или VT3 откроет транзистор VT4 и на его коллекторе установится напряжение близкое к логическому нулю.
Рис. 2.68. Электронный ключ с резистором
Исполнительное устройство состоит из триггера на микросхеме DD1 и транзисторного ключа на транзисторах VT5 и VT6, в коллекторной цепи которого включена обмотка электромагнита блокировки замка или электромагнитного реле, управляющего запирающим устройством тайника. Кнопка SB1 служит для запирания замка после закрывания дверцы тайника. При нажатии на нее триггер устанавливается в нулевое состояние и транзисторный ключ оказывается закрытым, электромагнит или реле — обесточено. Теперь при втыкании в гнездо штекера с кодовым резистором транзистор VT4 закрывается и на его коллекторе устанавливается единица. Триггер переходит в единичное состояние и ключ пропускает ток через электромагнит или реле. После вынимания штекера схема останется в таком состоянии до нажатия кнопки SB1.
При настройке резисторы R1 и (R2 + Рключ) могут выбираться в пределах 10—100 кОм, важно соблюдение приведенной выше формулы. Все детали, за исключением катушки YA1 электромагнита или реле и гнезда для подключения «кодового» резистора, смонтированы на одной компактной печатной плате с односторонним монтажом. Транзисторы могут быть с любыми буквенными индексами, но транзисторы моста VT1 и VT2 должны быть одинаковыми. Электромагнит взят готовый с подвижным сердечником. Питание устройства возможно от источника б... 15 В, но настройку нужно производить для рабочего напряжения (если схема будет работать от 9 В, то и настраивайте при таком питании), к тому же питание нужно стабилизировать.
Ключ—выключатель освещения
При использовании данного устройства для открывания тайника достаточно через некоторое время после включения освещения в помещении выключить и тут же включить выключатель освещения Это приведет к срабатыванию запирающего устройства (и возможно включения дополнительных ламп освещения, например внутри тацника). Человеку, непосвященному в эту хитрость, практически невозможно найти ключ к тайнику
Схема устройства приведена на рис 2 69. При замыкании контактов сетевого выключателя SA1 загорается только лампа (или группа ламп) EL2 Одновременно на микросхему DD1 через выпрямительный мост VD6—VD9 подается напряжение питания, стабилизированное параметрическим стабилизатором R4VD1 С этого момента через резистор R2 и диод VD3 начинает заряжаться конденсатор С2, а с выхода элемента DD1 1 напряжение высокого уровня быстро заряжает конденсатор СЗ (плюс на его правой обкладке) По мере заряда конденсатора С2 уровень сигнала на выходе элемента DD1 1 сменяется на низкий, но на входах элементов DD1.2 и DD1 3 за счет зарядки конденсатора СЗ и обратной связи через резистор R3 сохраняется высокий уровень. В это время на выходах элементов DD1 2 и DD1 3 — низкий уровень, транзистор VT1 закрыт, лампы EL1 и электромагнит YA1 выключены Конденсатор СЗ разряжен, так как теперь на обоих его выводах напряжение высокого уровня
Длительность зарядки конденсатора С2 зависит от его емкости и сопротивления резистора R2, и при их номиналах, указанных на схеме, не превышает 1 с Чтобы зажечь лампы EL1 и включить электромагнит, нужно выключить и тут же включить сетевое питание. За этот короткий промежуток времени накопительный конденсатор С1 быстро разрядится через резистор R1 и микросхема окажется обесточенной. Конденсатор СЗ быстро перезарядится — на его левой
Рис. 2 69. Ключ-выключатель освещения
(по схеме) обкладке будет высокий уровень, на правой — низкий. Если сразу после выключения питания выключатель снова включить, то на обоих входах элемента DD1.1 мгновенно появится напряжение высокого уровня, aha ббъеди-ненных входах элементов DD1.2 и DD1.3 — низкого, устанавливаедуе.конде^*-сатором СЗ. Это состояние элементов DD1.2 и DD1.3 поддерживается за счет обратной связи через резистор R3. Оно-то и обеспечивает включение транзистора VT1, тиристора VSl, лампы EL1 и электромагнита YA1.
Детали переключателя смонтированы на двух печатных платах, выполненных из одностороннего фольгированного стеклотекстолита толщиной 2 мм.
Микросхему К176ЛА7 можно заменить на К176ЛЕ5, К561ЛА7, а транзистор КТ605БМ - на КТ605Б, КТ940А. С диодами серии КД202 в выпрямительном мосту суммарная мощность ламп и электромагнита не должна превышать 1000 Вт.
2.8. Тайники с системой оповещения
После того, как вы установили сейф или оборудовали тайник для хранения своих сбережений можно было бы и не беспокоиться за их сохранность. Но это не так. Если в вашу квартиру или офис может проникнуть злоумышленник, не обладающий хорошей наблюдательностью и определенными навыками, тогда принятых вами мер будет вполне достаточно, чтобы сберечь ваши ценности. Но если вас посетил «специалист» высокого класса, то принятых мер будет уже не достаточно. Для защиты от таких профессионалов необходимо использовать дополнительную систему охраны и оповещения, использующую датчики вибрации, детекторы с бесконтактными датчиками (детекторы близости), контактные и магнитоконтактные датчики.
Наиболее простыми являются контактные датчики, разрушающиеся при попытке прикосновения. Это может быть отрезок тонкого провода, натянутого в том месте, где он может быть порван преступником. Или это может быть полоска тонкой (0,04...0,12 мм) фольги, наклеиваемая на стену, стекло и другую охраняемую поверхность. Магнитоконтактные датчики выполняются из герко-нов и постоянных магнитов и устанавливаются на поверхностях, перемещающихся одна относительно другой.
Очень часто используют так называемые детекторы близости (ДБ). Некоторые из них представляет собой емкостные реле, другие работают на принципе измерения уровня потерь радиоизлучения, которые возникают, когда какой-либо объект проследует мимо или коснется плоской металлической антенны, принимающей радиочастотный сигнал (рис. 2.70).
Широко используются и детекторы вибрации, реагирующие на любое механическое воздействие (рис. 2.71). Обычно они устанавливаются па металлические шкафы, сейфы и т.н. Рассмотрим некоторые примеры реализации вышеназванных устройств оповещения, доступных для самостоятельного повторения.
Рис 2 70 Принцип действия радиочастотного детектора близости
Рис 2 71 Принцип действия детектора вибрации
2.8.1. Устройство оповещения с контактным датчиком
Принципиальная*схема несложного охранного устройства, формирующего тревожный звуковой сигнал при обрыве шлейфного датчика, приведена на рис. 2.72. На логических элементах DD1.1 и DD1.2 микросхемы К561ЛА7 (DD1) собран генератор прямоугольных импульсов, следующих с частотой 2...3 Гц (fk=l /2R4C2), которые коммутируют тональный генератор, выполненный на элементах DD1.3 и DD1.4 той же микросхемы. Частота тонального генератора около 1 кГц (^=1/2К6СЗ). Пьезокерамический излучатель ВА1 преобразует сигнал генератора В звук. Источник питания GB1 — литиевая батарея типа «2БЛИК-1».
Печатную плату устройства изготавливают из двустороннего фольгирован-ного стеклотекстолита толщиной 1 мм. Фольгу со стороны деталей используют лишь как общий (минусовый) провод источника питания.
Все резисторы типа МЛТ-0,125. Конденсаторы С1 —СЗ — КМ6, С4 — оксид-ный К50-35. Перед монтажом звукоизлучателя ВА1 и конденсатора С4 необходимо оценить состояние их изоляции. При напряжении источника питания 6 В ток утечки в них не должен превышать 1 мкА.
Монтажную плату, звукоизлучатель и батарею питания размещают в корпусе размерами 48х32х17 мм, склеенном из ударопрочного полистирола толщиной 1,5...2 мм. При пайке проводников к звукоизлучателю и батарее питания лучше пользоваться низкотемпературным припоем и хорошим флюсом — перегрев здесь нежелателен.
Шлейфньш датчик представляет собой сложенный вдвое обмоточный провод ПЭВ-2 или ПЭВ-3 диаметром 0,07...0,1 мм нужной длины с двухконтактным разъемом на конце. Разъем может быть от микрокалькулятора. Ответную часть шлейфного разъема допустимо смонтировать непосредственно на корпусе устройства, но лучше ее вынести на механически прочном двухпроводном шнуре (удобен покрытый пластиком экранированный провод), что позволит соответственно укоротить сам шлейф. Оборванный шлейф обычно не ремонтируют, поэтому нужно иметь несколько полностью смонтированных запасных шлейфных датчиков.
Рис. 2.72. Устройство оповещения с контактным датчиком
Собранное без ошибок устройство оповещения налаживания не требует. Надо лишь убедиться в том, что в дежурном режиме, т.е. с целым шлейфом, потребляемый им ток не превышает нескольких микроампер, а звуковой сигнал, возникающий при отключении шлейфа, достаточно мощный. Повысить мощность звукового сигнала можно соответствующим подбором резистора R6. Излучение достигает максимума при совпадении частоты тонального генератора с частотой механического резонанса пьезоэлемента используемого звукоизлучателя. Ток, потребляемый устройством в режиме тревожной сигнализации, составляет 0.5...1 мА. Источником питания служит любая батарея с напряжением до 12 В, но с повышением напряжения соответственно увеличится ток дежурного режима (InoTp'^niiT /R1+1...2 мкА) и ток 1потртр • потребляемый устройством в режиме тревожной сигнализации. Правда, увеличится и громкость тревожного сигнала. В табл. 2.1 приведены значения потребляемого тока в дежурном режиме и режиме сигнализации в зависимости от напряжения питания.
Таблица 2.1. Значения потребляемого тока в дежурном режиме и режиме сигнализации в зависимости от напряжения питания
пит. | Iпo^pдeж.,MKA | 1 потр.тр., МА | |
4,5 | 1,5 | 0,3 | |
5 | 1.7 | 0,4 | |
6 | 2 | 0,6 | |
7 | 2,4 | 0,9 | |
8 | 2,7 | 1,3 | |
9 | 3,1 | 1,7 | |
10 | 3,5 | 2,4 | |
11 | 4 | 3 | |
12 | 4,4 | 3,7 |
2.8.2. Детекторы близости Детектор близости с колебательным контуром
Детектор близости, схема которого приведена па рис. 2.73, разработан для охраны металлических объектов, таких как несгораемые шкафы, сейфы и различного рода металлическое оборудование.
Два транзистора VT1 и VT2 типа п-р-п, образуют составной транзистор, включенный по схеме с общим коллектором и связанный с колебательным контуром через конденсатор С5. С ползунка резистора R4 в точку соединения конденсаторов С1 и С2. подается сигнал обратной связи, вызывающий генерацию. Глубина обратной связи и чувствительность регулируются переменным резистором
Рис 2 73 Детектор близости с колебательным контуром
R4 Частота генерации выбрана равной около 30 кГц Сигнал генератора, сни маемый с резистора R4, поступает на диодный выпрямитель с удвоением напряжения на диодах VD1 и VD2 Напряжение на выходе выпрямителя через резистор R3 создает прямое смещение на базе транзистора VT3, в результате чего он открывается Широкий диапазон регулировки чувствительности дает возможность легко настраивать детектор близости для охраны объектов размерами от монеты до «Медного всадника» Для питания схемы подойдет любой источник напряжения от 9 до 15 В, способный отдать в нагрузку ток до 20 мА
Смонтировав детали схемы на плате из изоляционного материала, помес тите ее в любой пластмассовый или металлический корпус Катушка индук тивности колебательного контура наматывается из 75 витков медного провода ПЭВ-1 0,3 мм на куске ферритового стержня размерами 8х75 мм, как показано на рис. 2 74
Катушку наматывайте виток к витку на середине стержня Завершив работу, оставьте выводы длиной по 7,5 см и закрепите витки изоляционной лентой Если ваша схема будет размещаться в металлическом корпусе, проследите, чтобы катушка индуктивности не находилась ближе 2,5 см от стенок В противном случае ее добротность будет снижена, что приведет к плохой работе всего устройства.
Рис 2 74 Конструкция катушки
Если есть возможность, общий провод питания схемы соедините с землей. Вход устройства соедините с охраняемым сейфом (рис. 2.75). Он должен быть изолирован от земли. Это можно сделать, подложив под него бруски из твердого дерева или другого хорошего изолятора. Бруски должны приподнимать охраняемый предмет на высоту не менее 3 см. В этом случае схема работает наилучшим образом.
Рис. 2.75 Подключение детектора близости
Подав питание на схему, подключите вольтметр постоянного напряжения к клемме В и положительной шине питания. Находясь на достаточном расстоянии от охраняемого объекта, вращением переменного резистора R4 найдите положение, при котором показания вольтметра будут скачком изменяться от нуля до напряжения, близкого к напряжению питания. Приблизившись к объекту, убедитесь, что в какой-то момент показания вольтметра упадут до нуля. Регулируя чувствительность устройства резистором R4, можно добиться надежного срабатывания устройства в нескольких сантиметрах от охраняемого предмета, а при желании — только при касании его.
Применяя детектор близости, часто стараются настроить его на максимальную чувствительность; в идеальных условиях это вполне возможно. Но во многих случаях окружающие условия далеки от идеальных и склонны изменяться. Изменение влажности, параметров деталей, даже мыши могут стать причиной ложной тревоги.
Детектор близости на микросхеме
Детектор близости, схема которого приведена на рис. 2.76, разработан для тех энтузиастов в электронике, кому больше нравится экспериментировать, чем собирать уже обкатанную схему.
Необходимо сказать несколько слов о применяемой в устройстве микросхеме. Четыре логических элемента ИЛИ-НЕ, входящих в цифровую микросхему К561ЛЕ5, собраны па полевых транзисторах с МОП-структурой и каналами
Рис. 2.76. Детектор близости на микросхеме
типов рип. Уже в саму схему заложена защита от статического напряжения и высоких электрических полей. Но, несмотря на это, следует быть весьма осторожным при запитывании этой микросхемы. Ни на одном из выводов микросхемы напряжение не должны превышать 16В. Производя какие-либо перепайки, всегда предварительно отключайте питание схемы. При соблюдении всех этих правил микросхема вас не подведет. Все детали схемы умещаются на плате размером 7,5х10 см. В качестве чувствительной антенны может служить пластина фольгированного стеклотекстолита или гетинакса, а также просто кусочек жести размером 15х15 см. Провод, соединяющий антенну со схемой, должен быть по возможности коротким, чтобы избежать паразитных наводок.
Логические элементы DD1.1 и DD1.2 образуют генератор низкой частоты. Его рабочая частота определяется сопротивлением резистора R2 и емкостью, распределенной в монтаже и самой микросхеме. На схеме эта емкость показана пунктирной линией и обычно не превосходит 25 нФ В случае, если генерация не возникает, что может быть следствием недостаточно распределенной емкости, можно подключить добавочный конденсатор СХ емкостью от 5 до 25 пФ между выводами 2 и 4 микросхемы. Для этой цели хорошо использовать подстроечный конденсатор.
Уровень выходного сигнала генератора регулируется переменным резистором R1, подающим смещение на один из входов элемента DD1.1, им же регулируется чувствительность прибора. Через резистор R4 с выхода диодного выпрямителя подается смещение на базу транзистора VT1, которое нодбираегся таким, чтобы в режиме ожидания транзистор был полностью открыт. Настройка детектора близости производится так же, как и в предыдущих схемах. Производя опыты со схемой, никогда не забывайте о необходимых предосторожностях в обращении с микросхемами МОП-структуры.
Детектор близости с приемником и передатчиком
Этот детектор близости работает совсем по-иному, чем первые два, и обладает другой конструкцией. Здесь в паре работают высокочастотный передатчик и настроенный на его частоту приемник. Антенны обоих устройств расположена так, что проходящий между ними объект становится «вспомогательной» антенной. Так, при проходе его вблизи антенны передатчика радиоволны будут излучаться и антенной передатчика, и этим объектом. При желании это устройство может использоваться для охраны не только сейфа иди металлического тайника, а практически любого металлического предмета
Рис 2.77. Передатчик детектора близости
Схема передатчика показана на рис. 2.77 Транзистор VT1, индуктивность L1 и конденсаторы Cl, C2 и СЗ образуют низкочастотный генератор. Эмиттер-ный повторитель на транзисторе VT2 служит буферным каскадом, развязывающим генератор и антенну Схема приемника приведена на рис. 2 78 Он состо-
Рис 2 78 Приемник детектора близости
ит из резонансного контура (ЫиСОи эмиттерного повторителя на транзисторах VT1 и VT2. Такая схема обладает весьма высоким входным сопротивлением и поэтому не шунтирует контур. Схему завершает электронный ключ на транзисторе VT4, который в режиме ожидания закрыт. Охраняемый предмет подключается электрически по входу приемника и служит приемной антенной.
Обе схемы могут быть смонтированы на платах из изоляционного материала, после чего помещаются в металлические или пластмассовые корпуса. Устройства некритичны к расположению деталей, и их удовлетворит любая монтажная схема. Катушки индуктивности приемника и передатчика одинаковы и состоят из 75 витков провода ПЭВ-1 0,3 мм, намотанного на отрезке ферритового стержня размером 8х75 мм, как показано на рис. 2.74.
При сборке приемника надо предусмотреть побольше свободного места вокруг конденсатора С1, чтобы можно было наилучшим образом настроить приемник на частоту передатчика. Если охраняемый предмет очень большой, то может понадобиться переходный конденсатор между ним и приемником, в качестве которого можно использовать конденсатор емкостью 5600 пФ. Он не вносит никаких поправок в работу устройства и может применяться во многих случаях, не приводя к снижению чувствительности.
Настройка устройства производится следующим образом. К сейфу, который вы собираетесь охранять, подключите вход приемника, как показано на рис. 2.79. Антенну передатчика расположите под ковром па полу или укрепите на противоположной стене. Площадь антенны должна быть не менее 250 см2, но иногда можно использовать антенну меньших размеров. Правда, при этом снижаются возможности устройства. Всегда неплохо поэкспериментировать с размером антенны и ее расположением для достижения наилучших характеристик устройства.
Рис. 2.79. Схема возможной установки детектора близости
Смонтировав таким образом устройство, подайте питание на передатчик и приемник. К конденсатору С5 приемника подключите вольтметр. Ползунок резистора R6 приемника должен находиться в верхнем (по схеме) положении.
Если при этом вольтметр показывает напряжение чуть меньше 0,4 В, схема обладает самой высокой чувствительностью. Для надежной работы устройства, находясь вдалеке от антенн приемника и передатчика, установите резистором R6 на конденсаторе С5 напряжение от 0,25 до 0,4 В.
При вводе устройства в работу проследите, чтобы были незаметны места подключения его к охраняемому предмету и хорошо скрыты провода, идущие к обоим антеннам. Плохо скрытая от глаз сигнализации, хотя и весьма дорогая и высокочувствительная, проигрывает в споре с опытным преступником, тогда как элементарный потайной выключатель сделает свое дело, подняв тревогу.
2.8.3. Детекторы вибрации
Детекторы вибрации относятся к специализированным приборам, поэтому их часто оставляют без внимания. Одной из причин этого является то, что в прошлом детекторы вибрации представляли собой просто утяжеленные электрические контакты, которые со временем приносили больше неприятностей, чем пользы. В этой области электроника доказала свою ценность еще раз, заменив ненадежные электрические контакты эквивалентными электронными схемами.
Детектор вибрации на микросхеме
Рассматриваемый детектор вибрации (рис. 2.80) интересен не своим схемным решением, а оригинальной конструкцией датчика.
Рис. 2.80. Детектор вибрации на микросхеме
На рис. 2.81 показано, как можно модифицировать обыкновенный миниатюрный громкоговоритель, сделав его чувствительным к "низким частотам и практически безразличным ко всем другим звукам.
За усиление сигнала вибрации отвечает микросхема DA1 КР1401УД2Б, в состав которой входят четыре операционных усилителя. На первом усилителе DA1.1 собран повторитель, согласующий низкое внутреннее сопротивление громкоговорителя со схемой. Последующие два каскада DA1.2 и DA1.3 дают
Рис. 2.81 Конструкция датчика вибрации
усиление порядка в 2000 раз. Усиление можно поднять еще выше — до 10000, уменьшив сопротивление резистора R6 до 1 кОм, по в большинстве случаев это не требуется. Усиленньш сигнал через конденсатор С5 поступает на выпрямитель с удвоением напряжения, а выпрямленное положительное напряжение через резистор R8 — на базу транзистора VT1. Когда вибрация отсутствует, напряжение на базе транзистора VT1 равно нулю. Он закрыт, а транзистор VT2 получает отпирающее напряжение через резисторы R10 и R11. Клеммы А и В получаются замкнутыми через транзистор VT2. При возникновении вибрации сигнал с датчика усиливается, и напряжение, снимаемое с выхода выпрямителя, открывает транзистор VT1, что влечет за собой закрывание транзистора VT2.
Если по каким-либо причинам, вытекающим из применения устройства, для работы сигнализатора необходимо нормально разомкнутое состояние на клеммах А и В, можно проделать несложную модификацию. Для этого удалите транзистор VT2, резисторы R10 и R11. Теперь в роли клеммы В будет выступать коллектор транзистора VT1, а клемма А останется без изменений. Эти клеммы можно использовать в качестве управляющих практически в любых из известных вам устройствах сигнализации. Но в большинстве случаев лучше от них запитывать небольшое чувствительное реле, а оно, в свою очередь, будет управлять исполнительными цепями.
Сборку сигнализатора вибрации следует начать с изготовления самого датчика вибрации. Для этого подойдет почти любой миниатюрный громкоговоритель с диаметром диффузора около 5 см или меньше. В нашем случае был выбран динамик диаметром 3,8 см. Поскольку медная монетка покрывает и место крепления катушки, и большую'часть самого диффузора, получившийся при этом датчик игнорирует практически все посторонние звуки, которые могли бы вызвать ложные срабатывания устройства.
К очищенной от оксидной пленки монетке припаяйте перпендикулярно швейную иглу. При размещении датчика вибрации на окнах, поверхности сейфов и прочих предметов игла датчика должна мягко касаться поверхности охраняемого объекта; На примере подобных датчиков, размещенных на стеклах витрин ма-газиноэ, становится понятно их действие. Когда стекло разбивают, датчик фиксирует повышенную вибрацию.
Можно сделать утяжеленный вариант датчика вибрации. Для этого вместо иглы к центру монетки припаяйте короткий отрезок одножильного провода и, согнув его параллельно поверхности монетки, на его конце укрепите еще одну. Такой датчик будет чувствовать и собственную вибрацию, и вибрацию объекта, на котором укреплен. Если его укрепить так, чтобы провод с припаянной монеткой находился вертикально, датчик зарегистрирует вибрацию, в каком бы из четырех направлений она ни возникла.
Детали схемы собираются на плате из изоляционного материала. Схема некритична к расположению деталей и вне зависимости от выбранной вами конструкции заработает с первой попытки. После сборки схемы плату поместите в любой металлический или пластмассовый корпус, но можно обойтись и без него.
Для проверки сигнализатора вибрации подайте питание на схему. Ползунок неременного резистора R7, регулирующего усиление, установите в среднее положение. На время проверки к клеммам А и В подключите резистор сопротивлением 3,3 кОм и параллельно к нему — вольтметр. Когда с датчика вибрации сигнал не поступает, вольтметр должен показывать напряжение около 12 В. Если это не так, необходимо внимательно проверить монтаж. Быстро и четко проверить работу операционных усилителей можно, измерив напряжения на выходах 1, 7 и 8 относительно общего провода. Если операционный усилитель исправен, напряжение будет 6 В, или, иначе, половина напряжения питания.
Исправив обнаруженные ошибки, приступайте к дальнейшей проверке. Положите датчик вибрации на стол так, чтобы игла мягко опиралась на его поверхность. Наблюдая за показаниями вольтметра, постучите по столу поблизости от иглы, при этом напряжение на вольтметре должно упасть до нуля и вернуться обратно, как только вибрация прекратится. Регулятором усиления R7 можно «научить» схему реагировать практически па любой уровень вибрации. Но не завышайте чувствительность прибора, иначе вам не избежать ложных срабатываний.
Датчик вибрации с иглой хорошо установить в том месте, где преступнику нужно разрушить какую-либо преграду, чтобы добраться до ценностей. При таком его использовании игла должна мягко опираться на поверхность разрушаемого объекта.
Проделав несколько опытов, вы найдете наиболее чувствительную точку. Всегда помните, что мало проку отдатчиков, установленных небрежно, в спешке, без проверки, действительно ли они работают так, как от них ожидают.
Детектор вибрации с пьезодатчиком
В предлагаемом варианте детектора вибраций, схема которого показана на рис. 2.82, пьезоэлектрическая пластина от зуммера использована в качестве микрофона. Она имеет отчетливый пик частотной характеристики (в зависимости от типа зуммера) в области частот 1500...3000 Гц. Такая характеристика пластины позволяет с хорошей достоверностью обнаружить импульсные сигналы на фоне достаточно сильных шумов. Прижатая или приклеенная к стеклу пластина датчика мгновенно реагирует на шумы, возникающие при разрезании стекла алмазом, и не реагирует на шумы, создаваемые, например, проезжающим мимо транспортом.
Рис. 2.82. Детектор вибрации с пьезодатчиком
Сигнал от датчика ВМ1 усиливается (примерно в 100 раз) операционным усилителем DA1, выпрямляется диодом VD1 и осуществляет зарядку конденсатора С2 через резисторы R9 и R5. Скорость зарядки зависит от положения движка переменного резистора, которым регулируют чувствительность устройства.
Когда напряжение на конденсаторе С2 достигнет порогового уровня срабатывания триггера на микросхеме DD1, последний переключается, открывает транзистор VT1 и включает реле К1 с задержкой на одну-две секунды.
Питание устройства осуществляется от источника постоянного тока с напряжением 9...15 В. Стабильность питания микросхем обеспечивает стабилизатор DA2 в интегральном исполнении. Изготовление устройства по предлагаемой схеме не должно вызвать затруднений. В качестве реле К1 следует использовать малогабаритное с током срабатывания порядка 10... 20 мА и числом замыкающихся контактов, достаточным для выполнения охранных функций, например включения тревожного сигнала.
Эффективность работы устройства зависит от способа его установки, в данном случае от установки самого датчика. Если необходимо защитить большое окно, то лучше датчик расположить непосредственно на стекле и экспериментальным путем выбрать такое его положение, при котором чувствительность устройства наибольшая. Но при этом надо обратить внимание, чтобы посторонние сопутствующие обстоятельства не оказывали на датчик воздействия — этим вы сохраните спокойствие свое и соседей.
В конструкции устройства в качестве ОУ можно использовать микросхемы типов К154УД2, К544УД2, КР544УД2 с соответствующими цепями коррекции, в качестве интегрального стабилизатора напряжения — К142ЕН5А, КР142ЕН5А, DD1 - К561ЛЕ5. Транзистор VT1 кремниевый - КТ315Б, диод VD1 герма-ниевый - ГД507А, VD2 - кремниевый Д223Б.
Детектор вибрации для изгороди
Любое ограждение можно охранять с помощью электроники, установив на нем специальный датчик вибрации или движения. Он подаст сигнал тревоги, как только забор окажется под воздействием внешней силы На рис. 2.83 показана схема устройства, разработанного именно для выполнения такой задачи. Главное отличие этого прибора от подобных ему состоит в датчике, который весьма чувствителен к боковым подвижкам. При движении по вертикали датчик также передаст в схему существенный сигнал. Поэтому не так важно, что злоумышленник вздумает сделать с ограждением, схема все равно сработает четко и подаст сигнал тревоги.
Если в предыдущей схеме датчик вибрации работал в любом положении, то показанный на рис. 2.84 всегда должен размещаться вертикально. Действие схемы, приведенной на рис. 2.83, очень просто и наглядно. Операционный усилитель DA1.1 образует повторитель, согласованный по сопротивлению с датчиком, к выходу которого подключен переменный резистор R9. Им производится регулировка чувствительности прибора. Сигнал, снимаемый с ползунка этого резистора, усиливается единственным каскадом на операционном усилителе DA1.2. Усиленный сигнал выпрямляется и через резистор R6 поступает на транзистор VT1, отпирая его Когда сигнал от датчика отсутствует, напряжение на выходе диодного выпрямителя равно нулю, транзистор VT1 закрыт, а на базу транзистора VT2 поступает отпирающее смещение через резисторы R7 и R5. Возникшая вибрация отпирает транзистор VT1, в результате чего запирается транзистор VT2.
Эта схема также некритична к расположению деталей. Единственной деталью, требующей к себе особого внимания, является сам датчик вибрации, чертеж которого показан на рис. 2.84. Конечно, можно отдать предпочтение собственной конструкции, работающей на том же принципе.
Рис. 2.83. Детектор вибрации для изгороди
Рис. 2 84 Конструкция датчика вибрации
Начните с переделки миниатюрного согласующего трансформатора, используемого в датчике. Для этого разберите полностью его сердечник, после чего вставьте все пластины обратно в одном направлении, чтобы сердечник представлял собой букву Ш. Может быть, вам и не удастся вставить обратно все Ш-образные пластины. Ничего страшного. Главное, чтобы они сидели плотным пакетом. В качестве сигнальной будет использоваться высокоомная обмотка трансформатора. Судя по всему, схему придется держать вдалеке от датчика, поэтому для соединения их между собой нужен экранированный провод.
В качестве корпуса датчика во время испытаний был выбран футляр размером 15х3,3х3,8 см, но можно использовать и больший. Особого внимания к себе требует установка переделанного трансформатора в паре с постоянным магнитом. Магнит подвешивается на нейлоновой нитке, достаточно эластичной, чтобы не растягиваться со временем. Зазор между сердечником трансформатора и магнитом должен составлять от 0,5 до 0,6 см, при этом между ними возникает заметное притяжение, словно они связаны невидимой пружиной. В случае необходимости к устройству можно подсоединить до трех таких датчиков, подключая их параллельно, при этом схема будет еще способной обеспечить необходимое повышенное усиление.
Размещая датчики в конкретном месте, следите, чтобы нить, па которой висит магнит, была вертикальной и давала ему возможность свободно качаться в любом направлении, не задевая стенок. Чувствительность датчика будет снижена, если магнит окажется смещенным относительно сердечника переделанного трансформатора. При выполнении этих рекомендаций у вас не должны возникнуть проблемы.
2.8.4. Детекторы присутствия
Если учесть тот факт, что человеческое тело в основном состоит из воды, которая является электрическим проводником, то можно предположить, что емкостной датчик для обнаружения человека — наиболее оптимальное решение. Емкостной датчик можно использовать в качестве сторожевого, реагирующего на проникновение злоумышленников в помещение, двери или на прикосновение к замкам либо ручкам входных дверей, металлическим шкатулкам, сейфам и т п.
Простое емкостное реле
Радиус действия реле зависит от точности настройки конденсатора С1, а также от конструкции датчика Максимальное расстояние, на которое реагирует реле, равно 50 см
Принципиальная схема емкостного реле приведена на рис 2 85, а конструкция индуктивной катушки с размещением ее и датчика на плате — на рис 2 86
Рис 2 85 Простое емкостное реле
Катушка L1 намотана на многосекционном полистироловом каркасе от контуров транзисторных радиоприемников и содержит 500 витков (250 + 250) с отводом от середины провода ПЭЛ 0,12 мм, намотанного внавал
Рис. 2 86 Конструкция индуктивной катушки емкостного реле
Датчик устанавливается перпендикулярно плоскости печатной платы. Он представляет собой отрезок изолированного монтажного провода длиной от 15 до 100 см, либо квадрат, выполненный из такого же провода, со сторонами от 15 см до 1 м„
Конденсатор С1 — типа КПК-М, остальные — типа К50-6. В качестве реле выбрано РЭС-10, паспорт РС4.524.312, можно также применить РЭС-10, паспорт РС4.524.303, либо РЭС-55А, паспорт 0602. Диод VD1 можно исключить, так как он необходим лишь для предохранения схемы от случайного изменения полярности питания.
Настраивается емкостное реле конденсатором С1. Сначала ротор С1 необходимо установить в положение минимальной емкости, при этом сработает реле К1. Затем ротор медленно поворачивают в сторону увеличения емкости до выключения реле К1. Чем меньше емкость подстроечного конденсатора, тем чувствительнее емкостное реле и больше расстояние, на котором датчик способен реагировать на объект. При настройке конденсатора корпус тела и руку с диэлектрической отверткой необходимо держать на возможно большем удалении от платы.
Емкостный датчик
Большинство схем емкостных датчиков состоят из двух генераторов и схемы, контролирующей нулевые биения или промежуточную частоту. При этом частота одного генератора стабилизируется кварцевым резонатором, а на настройку контура другого влияет внешняя емкость.
Схема, приведенная на рис. 2.87, содержит один генератор, работающий на частоте 460—470 кГц, воздействие на датчик приводит к тому, что изменяется ток, потребляемый генератором (внешняя емкость не столько изменяет частоту, сколько дополнительно нагружает контур). При увеличении внешней емкости ток потребления возрастает, что приводит к открыванию второго транзистора. Генератор собран на полевом транзисторе VT1. Частота настройки определяется параметрами контура на катушке L1. Датчик может быть произвольной
Рис. 2.87. Емкостный датчик
формы, например кусок монтажного провода, сетка, квадрат со стороной от 150 до 1000 мм или кольцо. Если датчик устанавливать в автомобиле, то для охраны стекла достаточно провода длиной 150 мм, можно установить сетку в сидениях или расположить провод в щелях приборной панели.
Ключ выполнен на транзисторе VT2. При воздействии на датчик ток, потребляемый генератором, увеличивается и транзистор VT2 открывается, при этом напряжение на его коллекторе становиться близким к напряжению питания (схема питается от параметрического стабилизатора на стабилитроне VD1 и резисторе R6).
Исполнительное устройство выполнено па микросхеме DD1 по схеме одновибратора. Цепь R5C5 нужна для задержки срабатывания устройства после включения. Если задержка не нужна, конденсатор С5 можно исключить. Можно сделать вариант с задержкой и контрольным светодиодом. В этом случае нужно уменьшить сопротивление R6 до 150 Ом, a R4 до 620 Ом, и включить последовательно с R4 светодиод типа АЛ307 в прямом направлении. Теперь первые пять-десять секунд после включения реакция датчика приведет только к зажиганию светодиода. Затем, после окончания этого времени, каждое срабатывание будет приводить к появлению на выходе схемы положительного импульса длительностью около 10с. Длительность импульса можно регулировать, изменяя сопротивление R7 или емкость Сб.
Емкостный датчик собран на одной печатной плате из одностороннего фоль-гированпого стеклотекстолита. Подстроечпый конденсатор — типа КПК, полевой транзистор VT1 может быть с любым буквенным индексом, что же касается VT2 — здесь подойдет любой р-п-р транзистор малой мощности, включая и МП39—МП42. Микросхему К176ЛА7 можно заменить на К561ЛА7 или даже на К561ЛЕ5, но в этом случае нужно поменять местами R5 и С5, изменить полярность включения С6 на противоположную; вывод R7, соединенный с общим проводом, подключить к катоду стабилитрона, а выходной сигнал снимать с вывода 3 DD1, включив элемент с выводами 12, 13 и 11 между коллектором VT2 и выводом 9 DD1.
Катушка намотана на стандартном четырехсекционном каркасе от катушки гетеродина средневолнового радиоприемника. Ферритовый сердечник (и броневой, если имеется) удаляется. Катушка имеет 1000 витков с отводом от середины провода ПЭВ 0,06 мм. Стабилитрон можно выбрать любой соответствующей мощности с напряжением стабилизации 7...10 В.
Для настройки подключите датчик и расположите плату там, где она будет находиться (или недалеко от этого места). Подключив питание, диэлектрической отверткой установите ротор конденсатора С1 в состояние минимальной емкости. При этом схема должна сработать. Затем, постепенно поворачивая его на небольшой угол и удаляясь после этого па расстояние недосигаемости (около полуметра), установите ротор С1 в такое положение, при котором схема перестает срабатывать, пока вы не приблизитесь на такое расстояние, которое хотите установить.
Емкостное реле на LC-контуре
Принцип Действия описываемого варианта емкостного реле (рис. 2.88) основан на изменении частоты LC-генератора под влиянием воздействия на его элементы внешних предметов — эффекта, знакомого вам по реакции радиоприемника на поднесение руки к его антенне. Такой генератор емкостного реле образуют катушка L1, емкость датчика Е1, конденсаторы С1, С2, полевой транзистор VT1 и, конечно, незначительная емкость монтажа устройства.
Рис. 2.88. Емкостное реле на LC-контуре
Если напряжение питания транзистора стабилизировано и емкость датчика неизменна, то и частота генератора тоже неизменна (в нашем случае примерно 100 кГц). Но стоит приблизиться или коснуться датчика рукой, его емкость увеличивается, а частота электрических колебаний генератора уменьшается. Резкое изменение частоты LC-генератора — это и есть сигнал о нарушении исходных параметров чувствительного элемента емкостного реле.
Но этот сигнал надо еще обнаружить. Решить задачу помогает второй LC-контур, образованный катушкой L2, конденсатором С4 и слабо связанный (чтобы не упала добротность) с генератором через резистор R1. Используется знакомое вам свойство резонансного контура — зависимость напряжения на нем от частоты колебаний поступающего сигнала. Выделенное контуром напряжение сигнала выпрямляется диодом VD1, фильтруется конденсатором С5 и далее поступает на инвертирующий вход (вывод 2) операционного усилителя (ОУ) DA1, выполняющего функцию компаратора.
Конденсатором С4 резонансный контур настраивают на исходную частоту FO генератора. При этом на инвертирующем входе компаратора действует постоянное напряжение Ugx max- Резисторами R2 и R3 устанавливают на неинвертирующем входе (вывод 3) ОУ пороговое напряжение U,iop. Несколько меньшее, чем UBX щах- В этом случае напряжение на выходе ОУ мало и светодиод HL1, подключенный к нему через ограничительный резистор R5, не горит.
Если изменение частоты генератора будет таким, что напряжение U„x станет меньше U„op, компаратор сработает и включит светодиод. При удалении от датчика частота генератора вновь станет исходной, напряжение IJ„)( увеличится, компаратор переключится в первоначальное состояние и светодиод погаснет.
Катушки L1 и L2 идентичные по конструкции и намотаны на кольцах из феррита 2000НМ с внешним диаметром 20 мм (можно 15 мм) и содержат 100 витков провода ПЭВ-2 0,2 мм. Намотка виток к витку, в один слой. Отвод катушки L1 сделан от 20-го витка, считая от вывода, соединенного общим проводом, L2 — от середины. Расстояние между началом и концом катушек должно быть не менее 3...4 мм. Транзистор VT1 — КПЗОЗБ, операционный усилитель DA1 - К140УД7, К140УД8, диод VD1 - КД503Б, КД521, КД522Б. Конденсаторы С1 и С2 - типа КТ, КД, КМ, СЗ и С5 - КЛС, KM, C4 - КПК-1, резисторы R2 и R3 - типа СПЗ-3, остальные - ВС, МЛТ.
После сборки реле проводят предварительную регулировку (цепочку R5HL1 пока не подключают). Роль датчика могут временно выполнять два отрезка провода диаметром 0.5...1 мм длиной по 1...1,5 м, расположенные параллельно па расстоянии 15...20 см один от другого. К конденсатору С5 подключают вольтметр постоянного тока с относительным входным сопротивлением менее 10 кОм/В и подстроечпым конденсатором C4 добиваются максимального показания напряжения вольтметра. Если при этом емкость конденсатора C4 окажется наибольшей, то параллельно ему подключают дополнительный конденсатор емкостью 10... 15 нФ и подстройку повторяют. Вольтметр должен фиксировать напряжение 2,5...5 В. Если оно меньше, подбирают резистор R1, но его сопротивление должно быть более 500 кОм. После каждой замены резистора подстройку повторяют.
Далее, к выходу ОУ подключают последовательно соединенные резистор R5 светодиод HL1. Движок резистора R3 устанавливают в нижнее по схеме положение, резистор R2 — в среднее. При этом светодиод должен гореть. Медленно перемещая движок резистора R3, добиваются погасания светодиода. Если теперь к датчику поднести руку или коснуться провода, соединенного с конденсатором С1, светодиод должен загореться. На этом предварительную регулировку емкостного реле можно считать законченной.
Схема исполнительного устройства приведена па рис. 2.90. К выходу емкостного реле через делитель R1R2 подключают электронный ключ на транзисторе VT1, управляющий электромагнитным реле К1, контакты К1.1 которого включают осветительную лампу EL1 или сирену. Блок питания включает в себя понижающий трансформатор Т1, выпрямитель на диодах VD3—VD6 и фильтрующий конденсатор С2. Напряжение питания самого емкостного реле (9 В) стабилизируется параметрическим стабилизатором R3VD1.
При срабатывании емкостного реле на его выходе появляется постоянное напряжение 7...8 В, часть которого поступает па базу транзистора VT1. Транзистор открывается, реле К1 срабатывает и замыкающимися контактами К1.1 подключает к сети лампу EL1 или сирену. После восстановления исходного режима работы емкостного реле транзистор закрывается и лампа гаснет.
Транзистор VT1 может быть КТ315Б - КТ315Д, КТ312А - КТ312В или другой аналогичный. Диоды VD3 — VD6 — любые выпрямительные с допустимым прямым током не менее 40...50 мА. Оксидпые конденсаторы — типа К50-6 или другие на соответствующие номинальные напряжения, резисторы — типа ВС, МЛТ. Реле К1 — РЭС22, паспорт РФ4.500.129 или аналогичное, срабатывающее при напряжении 9...11 В.
Налаживание автомата сводится к окончательной настройке его емкостного реле. Для этого параллельно конденсатору С5 (см. рис. 2.88) подключают высокоомный вольтметр постоянного тока и подстроечным конденсатором С4 устанавливают на нем максимальное напряжение — оно должно быть примерно таким же, как и при предварительной настройке. Если добиться этого не удается, параллельно С4 подключают дополнительный конденсатор емкостью 20...30 пФ и настройку повторяют.
Рис. 2.89 Исполнительное устройство
Для повышения чувствительности устройства контур L2C4 следует настраивать не на максимум напряжения, а немного меньше — примерно на уровне 0,7 UBX max- А так как возможны две точки настройки (выше и ниже Fo), правильна будет та, которая соответствует меньшей емкости конденсатора С4. После этого резисторами R2, R3 добиваются четкого срабатывания электромагнитного реле.
2.8.5. Оптоэлектронный датчик дыма
Кроме воды и грызунов существует еще один способ уничтожения тайника и его содержимого — пожар Для определения признаков пожара предлагаем вашему вниманию простой оптоэлектронный датчик дыма с питанием от линии (рис. 2 90). Устройство работает следующим образом
На диодах VD1 и VD2 выполнена оптопара с открытым каналом В качестве излучающего и приемного светодиодов используется светоизлучающий ИК диод АЛ107Б. При освещении светодиода VD2 потоком ИК излучения от све-тодиода VD1 первый будет иметь небольшое сопротивление, и в точке соединения резисторов R2, R3 и светодиода VD2 значение напряжения будет менее половины напряжения питания На триггере Шмитта (элементы DD1.1, DD1.2) установится уровень логического «О». Генератор импульсов, выполненный на элементах DD1 3, DD1 4 блокирован этим уровнем (на выводе 9 DD1.3). Транзистор VT1 закрыт уровнем логического «О» на выводе 11 элемента DD1.4. При попадании дыма на датчик освещенность светодиода VD2 уменьшается и, как следствие, увеличивается его сопротивление. Напряжение в точке соединения элементов R2, R3, VD2 возрастает, приводит к срабатыванию триггера Шмитта и включению генератора на элементах DD1.3, DD1.4.
Рис. 2.90. Принципиальная схема датчика дыма
С выхода последнего (вывод 11 DD1.4) через резистор R6 положительные импульсы поступают на базу транзистора VT1. Он открывается и замыкает линию связи через резистор R7 на землю. При этом напряжение в точке соединения элементов VD3, R7, R8 уменьшается, а при закрывании транзистора VT1 — увеличивается. Таким образом, при появлении дыма на выходе линии (точка соединения элементов VD3, R7, R8) будут присутствовать импульсы с частотой, задаваемой генератором на элементах DD1.3, DD1.4. Эти импульсы обрабатываются схемой оповещения о пожаре (на рис. не показана), и выдается сигнал тревоги.
Питание устройства осуществляется по линии связи от источника +12 В через резистор R8. При этом в исходном состоянии (дым отсутствует) конденсатор С2 заряжен через диод VD3. При срабатывании датчика питание устройства будет осуществляться от конденсатора С2, который подзаряжается через диод VD3 при закрывании транзистора VT1. При замыкании линии через резистор R7 и транзистор VT1 диод VD3 препятствует разряду конденсатора С2. Одна из возможных конструкций датчика дыма показана на рис. 2.91. Вместо светодиодов АЛ107Б модно использовать АЛ108, Настройка датчика заключается в установке порога срабатывания триггера Шмитта изменением сопротивления резистора R2.
Рис. 2.91. Конструкция датчика дыма
-----------------------------------------------------------------------------------------------------------------------------------------------