Тактовые частоты и производительность.
Схемы | Программы | Библиотека | Все для сотового | Компьютеры | Поиск |
Чат | Форум | Ссылки | Рефераты | Гостевая |
Повышение производительности компьютера возможно через увеличение частоты шины, внешней и внутренней частоты процессора. Как уже упоминалось ранее, самый лучший и простой способ увеличить производительность системы — это увеличить частоту шины. Однако это можно осуществить только в том случае, если данную возможность допускает конкретная модель материнской платы. В противном случае следует ограничиться повышением тактовой частоты процессора. Внутренняя частота процессора задается через коэффициент умножения внешней частоты. Это так называемый множитель. Следует отметить, что внутренняя частота процессора — это частота, на которой он выполняет операции внутри самого полупроводникового кристалла. А внешняя частота — это частота host-шины (FSB, SB, CPU Bus), т. е. частота, на которой работают чипсет, кэш-память, оперативная память. Другие составляющие компьютера, например контроллеры устройств, работают на частотах шин, через которые они подключены к системе, например, через шины PCI и AGP. Причем для шины PCI рабочая частота, как правило, составляет половину частоты host-шины. Для некоторых материнских плат — половину или треть, в зависимости от величины частоты. Возможны и другие коэффициенты деления частоты host-шины. Современные видеоадаптеры в компьютерах с процессорами Pentium II, Pentium III и аналогичных, как правило, подключены к остальным частям компьютера через шину AGP, частота которой также зависит от частоты host-шины. Все это означает, что изменение частоты host-шины ведет к изменению пропускной способности шин PCI и AGP и, в конечном счете, к изменению производительности всей системы компьютера. Взаимосвязь частот можно проследить на примере процессора Intel Pentium-166. Внутренняя частота данного процессора, на которую он рассчитан и на которой рекомендуется выполнять внутреннюю обработку данных, составляет, как это следует из названия, 166 МГц. Эта частота задается внешней частотой — частотой host-шины и множителем. При частоте шины 66 МГц множитель должен составлять 2,5 (2,5 х 66 МГц составляет 166 МГц). То есть, если процессор работает на тактовой частоте в Л'раз больше, чем частота host-шины, то внутренняя частота задается соотношением: Частота host-шины х Х= Внутренняя частота процессора, где X— множитель. В приведенном примере частота PCI-шины — 33 МГц. Для процессора Intel Pentium-150 внутренняя частота — 150 МГц, внешняя — 60 МГц, множитель — 2,5, частота PCI — 30 МГц. Множитель для процессоров Intel Pentium и аналогичных процессоров других фирм обычно задается специальными перемычками на материнской плате. Реже он устанавливается в BIOS Setup. В следующих таблицах приведен список популярных процессоров, их частоты, а также коэффициенты умножения внешней частоты. Процессоры Intel Pentium
Процессоры Intel Pentium II
Процессоры Intel Celeron
Процессоры Pentium III (SECC2)
Процессоры Pentium III (PGA370)
Процессоры AMD K5/K6
Процессоры AMD Athlon (0,25 микрон — Model 1)
Процессоры AMD Athlon (0,18 микрон — Model 2)
Процессоры AMD Athlon (0,18 микрон — Model 4 (256 Кбайт L2 на кристалле)
Процессоры AMD Duron
Процессоры AMD Thunderbird
Процессоры Cyrix/IBM 6x86
Процессоры IDT
В таблице приведены только стандартные, установленные по умолчанию, параметры. Но, меняя эти параметры, можно достичь существенного выигрыша в производительности. Однако следует помнить, что для достижения максимальной производительности в первую очередь необходимо повысить частоту host-шины или, по крайней мере, устанавливая параметры выбранного режима, постараться не уменьшить ее величину. Например, изменив комбинацию установочных перемычек, задающих внутреннюю частоту процессора 166 МГц (2,5 х 66 МГц) на 180 МГц (3 х 60 МГц), пользователь рискует уменьшить реальную производительность системы. Казалось бы, частота работы процессора увеличилась с 166 МГц до 180 МГц, следовательно, будет выигрыш в производительности. Действительно, производительность процессора, по всей видимости, возрастет. Но нельзя забывать и о другом важном параметре — внешней частоте — частоте host-шины. Именно она и играет одну из главных ролей в процессе передачи данных между процессором и памятью (кэш, ОЗУ), а также определяет работу остальных подсистем, т. е. оказывает значительное влияние на общую производительность всей системы компьютера. А что касается роста производительности процессора, то в данном случае этот рост касается, в основном, операций, не требующих интенсивного обмена данными с памятью и другими подсистемами компьютера. При переходе от частоты 133 МГц (2 х 66 МГц) к 150 (3 х 50 МГц) также возможна некоторая потеря реального быстродействия системы. В приведенных примерах за счет роста внутренней частоты процессора он действительно будет работать более интенсивно. Однако ввиду уменьшения частоты шины произойдет сокращение скорости передачи данных. Упадет также и производительность компьютера на задачах, требующих интенсивного обмена процессора с ОЗУ и кэш-памятью. Следует напомнить, что официально процессоры Pentium, Pentium Pro и AMD K5 используют внешние частоты 50, 60 и 66 МГц. Выбор частоты зависит от процессора и чипсета. Для процессоров 6x86 — 50, 55, 60, 66 и 75 МГц. Однако существуют материнские платы, которые позволяют реализовать внешние частоты большие, чем принято — так называемые "недокументированные частоты". Это частоты — 75 и 83 МГц. Хотя, следует отметить, что существуют платы с документированной частотой 75 МГц, т. е. производитель материнской платы гарантирует работоспособность элементов платы на этой частоте. Это, например, некоторые платы фирмы ASUSTeK. Используя нестандартную частоту 75 МГц для процессоров и чипсетов фирмы Intel, можно попытаться увеличить производительность компьютера разгоном процессоров Pentium даже без увеличения внутренней частоты. Примером может служить процессор Pentium-150: от 150 МГц (2,5 х 60 МГц) к 150 МГц (2 х 75 МГц). Из всего вышесказанного следует, что производительность компьютера возрастет, однако без увеличения внутренней тактовой частоты процессора и, практически, без изменения его теплового режима. Однако следует отметить, что возрастет нафузка на оперативную и кэш- память, которые будут вынуждены работать на более высокой тактовой частоте — разгон памяти (и некоторых других подсистем). Чтобы изменить тактовую частоту host-шины, необходимо обратиться к документации по материнской плате. Там можно найти всю информацию по этому поводу. А именно: какие перемычки (jumpers) отвечают за эту частоту, какую комбинацию необходимо выбрать, чтобы установить требуемую частоту, если возможно, то и множитель. Использование повышенных частот, 75 МГц и 83 МГц, может привести к некоторым последствиям, о которых следует знать до выполнения процедуры разгона. При использовании частот 75 МГц и 83 МГц шина PCI будет работать, как правило, на частотах — 37,5 МГц и на 41,6 МГц соответственно. Данные частоты могут сказаться на работе, например, видеоадаптера, установленного на шине PCI, и контроллера дисков, подключенного через ту же шину PCI. При повышенных частотах — в форсированных режимах — некоторые устройства сохраняют работоспособность. Однако, выполняя свои функции при возросших частотах, они могут сильно нагреваться. В этом случае следует как-то реализовать их достаточное охлаждение. Другие — могут работать нестабильно. В этом случае придется либо отказаться от использования повышенных частот, либо заменить устройства такими, которые более приспособлены к работе на этих частотах. Скорость EIDE-контроллера зависит не только от режима РЮ или DMA, но и существенно зависит от частоты шины PCI. Именно поэтому выгодно использовать повышенные частоты. Но существуют примеры, когда жесткие диски устойчиво и быстро работают при частоте 75 МГц, а при повышении частоты до 83 МГц резко снижается их производительность, например, до РЮ 2. То же самое можно сказать и по поводу CD-ROM-дисководов. Конечно, такие режимы нежелательны, т. к. в этом случае общая производительность системы снизится. Пользователя может также ожидать проблема с памятью. При частоте 83 МГц возможно использование только памяти типа SDRAM или специальной High-End EDO DRAM. Но бывают и исключения, когда некоторые модули памяти, вопреки своему типу и происхождению, сохраняют работоспособность на повышенных частотах. Однако лучше все-таки применять те типы памяти, которые рассчитаны на работу при высоких частотах. |
--------------------------------------------------------------------------------------------------------------------------------------------